Document Type : Original Article

Authors

1 Ege University, Institute of Nuclear Sciences, Department of Nuclear Applications, Bornova Izmir, 35100, Turkey

2 Aston University, School of Life and Health Sciences, Aston Triangle, Birmingham, B4 7ET, United Kingdom

3 School of Engineering and Applied Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, United Kingdom

4 Memorial Sloan Kettering Cancer Centre, Department of Radiology, New York, USA

5 University Hospital Singapore, Cardiothoracic and Vascular Surgery Department, Singapore

Abstract

< p>< p>We present a report regarding the cytotoxic effects of iron-based magnetic nanoparticles conjugated with fluorodeoxyglucose (FDG-mNPs) on the viability of NCI-H727 and SH-SY5Y cancer cells. MTT assays were performed to determine cell viability in treated cancer cells grown under standard 2D culture conditions. FDG-mNP concentrations of 0.075 mg/mL, 0.15 mg/mL, and 0.3 mg/mL decreased mean cell viability of NCI-H727 cells to 92.5%, 82.9%, and 75% respectively. FDG-mNPs was also shown to have a detrimental effect on the viability of SY5Y cells: a decrease of 5.7%, 18.6%, and 36.4% was found for SY5Y cells treated with 0.075 mg/mL, 0.15 mg/mL, and 0.3 mg/mL concentrations of FDG-mNPs, respectively. When NCI-H727 and SH-SY5Y cancer cells were grown as 3D spheroids, morphology was visibly changed and the number of viable cells was decerased in spheroids treated with FDG-mNPs compared with untreated spheroids. The results of our study demonstrated that FDG-mNP has toxic effects on NCI-H7272 and SY5Y cancer cells, and we conclude that conjugated FDG-mNPs are promising in the development of clinical applications for the destruction of cancer cells.

Graphical Abstract

Effects of fluorodeoxyglucose magnetic nanoparticles on NCI-H727 and SH-SY5Y cancer cells

Keywords

Main Subjects

[1]. Amin P., Patel M. Asian Journal of Nanosciences and Materials, 2020, 3:24

[2]. Patra J.K., Das G., Fraceto L.F., Campos E., Rodriguez-Torres M., Acosta-Torres L.S., Diaz-Torres L.A., Grillo R., Swamy M.K., Sharma S., Habtemariam S., Shin H.S. Journal of Nanobiotechnology, 2018, 16:71

[3]. Poh S., Chelvam V., Low P.S. Nanomedicine (Lond)., 2015, 10:1439

[4]. De Jong W.H., Borm, P.J. International Journal of Nanomedicine, 2008, 3:133

[5]. Ma L., Kohli M., Smith A. ACS Nano, 2013, 7:9518

[6]. Guo P., Liu D., Subramanyam K., Wang B., Yang J., Huang J., Auguste D.T., Moses M.A. Nature Communications, 2018, 9:130

[7]. Subramanian M., Pearce G., Guldu O.K., Tekin V., Miaskowski A., Aras O., Unak P. IEEE Transactions on NanoBioscience, 2016, 15:517

[8]. San-Millán I., Brooks G.A. Carcinogenesis, 2017, 38:119

[9]. Park S.G., Lee J.H., Lee W.A., Han K.M. Nuclear Medicine and Biollogy, 2012, 39:1167

[10]. Yasakci V., Tekin V., Guldu O.K., Evren V., Unak P. Journal of Radioanalytical and Nuclear Chemistry, 2018, 318:1973

[11]. Oh N., Park J.H. International Journal of Nanomedicine, 2014, 9:51

[12]. Ailenberg M., Di Ciano-Oliveira C., Szaszi K., Dan Q., Rozycki M., Kapus A., Rotstein O.D. British Journal of Pharmacology, 2015, 172:3748

[13]. Edmondson R., Broglie J.J., Adcock A.F., Yang L. Assay and Drug Development Technologies, 2014, 12:207

[14]. Ozkaya F., Unak P., Medine E.I., Sakarya S., Unak G., Timur S. Journal of Radioanalytical and Nuclear Chemistry, 2013, 295:1789

[15]. Watkins A.J., Pearce G., Unak P., Guldu O.K., Yasakci V., Akin O., Aras O., Wong J., Ma, X. Journal of Biomedical Nanotechnology, 2018, 14:1979

[16]. Aras O., Pearce G., Watkins A.J., Nurili F., Medine E.I., Guldu O.K., Tekin V., Wong J., Ma X., Ting R., Unak P. PloS One, 2018, 13:e0202482

[17]. Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J.Y., White D.J., Hartenstein V., Eliceiri K., Tomancak P., Cardona A. Nature Methods, 2012, 9:676

[18]. Halkes K.M., Souza A.C., Maljaars E.P., Gerwig G.J., Kamerling J.P. European Journal of Organic Chemistry, 2005, 17:3650

[19]. Schneider C.A., Rasband W.S., Eliceiri K.W. Nature Methods, 2012, 9:671

[20]. Ivanov D.P., Parker T.L., Walker D.A., Alexander C., Ashford M.B., Gellert P.R., Garnett M.C. PLoS One, 2014, 9:e103817

[21]. Amaral R.L.F., Miranda M., Marcato P.D., Swiech K. Frontiers in Physiology., 2017, 8:605

[22]. Kelm J.M., Timmins N.E., Brown C.J., Fussenegger M., Nielsen L.K. Biotechnology and Bioengineering, 2003, 83:173

[23]. Zanoni M., Piccinini F., Arienti C., Zamagni A., Santi S., Polico R., Bevilacqua A., Tesei A. Scientific Reports, 2016, 6:19103

[24]. Roa W., Xiong Y., Chen J., Yang X., Song K., Yang X., Kong B., Wilson J., Xing J.Z. Nanotechnology, 2012, 23:375101

[25]. Hu C., Niestroj M., Yuan D., Chang S., Chen J. International Journal of Nanomedicine, 2015, 10:2065

[26]. Haraguchi M., Torii S., Matsuzawa Si., Xie Z., Kitada S., Krajewski S., Yoshida H., Mak T.W., Reed J.C. Journal of Experimental Medicine., 2000, 191:1709

[27]. Gao H., Shi W., Freund L. B., Proceedings of the National Academy of Sciences, 2005, 102:9469

[28]. Sutherland R.M., McCredie J.A., Inch W.R. Journal of the National Cancer Institute, 1971, 46:113