Document Type: Original Article

Authors

1 Department of Chemistry, Faculty of Science, Sebha University, Sebha, Libya

2 Central Laboratory at Sebha University, Sebha, Libya

Abstract

In this study, photocatalytic activity of Ca-doped ceria (CDC) for malachite green (MG) degradation was investigated. CDC was successfully synthesized via co-precipitation method using ammonium oxalate as a precipitating agent. CDC was characterized using Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), UV-Vis spectroscopy, and scanning electron microscopy (SEM). The band gap energy (Eg) of CDC was found to be 3.96 eV. In addition, the factors affecting the photodegradation of MG including; irradiation time, photocatalyst dosage, initial dye concentration, and solution temperature were studied. The results revealed that CDC could degrade approximately 93% of MG dye at the concentration of 6 mg/L, irradiation time of 90 min, photocatalyst dosage of 0.1 g, and solution temperature of 35 °C. The obtained results indicate that CDC is a promising material for the photocatalytic applications and can be used to eliminate very toxic dyes such as MG.

Graphical Abstract

Keywords

[1].  Mousavi M., Habibi-Yangjeh A., Pouran S. R.  J. Mater. Sci. Mater. Electron.,2018, 29:1719

[2]. Chen Y., Zhang Y., Liu C., Lu A., Zhang W. Int. J. Photoenergy., 2012, 2012:1

[3]. Mohamed A., Ghobara M. M., Abdelmaksoud M. K., Mohamed G.G. Sep. Purif. Technol., 2019, 210:935

[4]. Gallego-Urrea J.A., Hammes J., Cornelis G., Hassellöv M. NanoImpact.,  2016, 3-4:67

[5]. Dickhout J.M., Moreno J., Biesheuvel P.M., Boels L., Vos W.M.d., Lammertink R.G.H. J. Colloid Interface Sci., 2017, 487:523

[6]. Gnanam S., Rajendran V. J. Alloys Compd., 2018, 735:1854

[7]. Murugana R., Kashinath L., Subash R., Sakthivel P., Byrappa K., Rajendran S., Ravi G. Mater. Res. Bull., 2018, 97:319

[8]. Al-Anber Z.A., Al-Anber M.A., Matouq M., Al-Ayed O.O., Omari N.M.N.M. Desalination., 2011, 276:169

[9]. Amar I. A., Sharif A., Alkhayali M., Jabji M., Altohami F., AbdulQadir M., Ahwidi M.M. IJEE.,  2018, 9:247

[10]. Awin L.A., El-Rais M.A., Etorki A.M., Mohamed N.A., Erhab H.M. Mater. Focus., 2018, 7:1

[11]. Feizpoor S., Habibi-Yangjeh A. , Yubuta K., Vadivelc S. Mater. Chem. Phys., 2019, 224:10

[12]. Markovic D., Milovanovic S., Radoicic M., Radovanovic Z., Zizovic I., Saponjic Z., Radetic M. J. Serb. Chem. Soc., 2018, 83:1379

[13]. Adepu A.k., Katta V., Venkatathri N. New. J. Chem., 2017, 41:2498

[14]. Pirhashemi M., Habibi-Yangjeh A., Pouran S.R. J. Ind. Eng Chem., 2018, 62:1

[15]. Ayodhya D., Veerabhadram G. Mater. Today. Energy., 2018, 9:83 

[16]. Van Dao D., Nguyen T.T.D., Majhi S.M., Adilbish G., Lee H.J., Yu Y.T., Lee I.H. Mater. Chem. Phys.,  2019, 231:1

[17]. Elahi B., Mirzaee M., Darroudi M., Oskuee R.K., Sadri K., Amiri M.S. Ceram. Int., 2019, 45:4790

[18]. Chandar N.K., Jayavel R. Physica E., 2014, 58:48

[19]. Channei D., Inceesungvorn B., Wetchakun N., Ukritnukun S., Nattestad A., Chen J., Phanichphant S. Sci. Rep., 2014, 4:5757

[20]. Goubin F., Rocquefelte X., Whangbo M.H., Montardi Y., Brec R., Jobic S. Chem. Mater., 2004, 16:662

[21]. Yu J.G., Yang B.C., Shin J.W., Lee S., Oh S., Choi J.H., Jeong J., Noh W., An J. Ceram. Int., 2019, 45:3811

[22]. Amar I.A., Petit C.T. G., Zhang L., Lan R., Skabara P.J., Tao S.W. Solid. State. Ionics., 2011, 201:94

[23]. Amar I.A., Petit C.T.G., Mann G., Lan R., Skabara P.J., Tao S. Int. J. Hydrogen Energy., 2014, 39:4322

[24]. Li H., Wang G., Zhang F., Cai Y., Wang Y., Djerdj I. RSC. Adv., 2012, 2:12413

[25]. Li R., Yabe S., Yamashita M., Momose S., Yoshida S., Yin S., Sato T. Solid. State. Ionics., 2002, 151:235

[26]. Truffault L., Ta M.T., Devers T., Konstantinov K., Harel V., Simmonard C., Andreazza C., Nevirkovets I.P., Pineau A., Veron O., Blondeau J.P. Mater. Res. Bull., 2010, 45:527

[27]. Slostowski C., Marre S., Bassata J.M., Aymonier C. J. Supercrit. Fluids., 2013, 84:89 [28]. Yue L., Zhang X.M. J. Alloys Compd.,  2009, 475:702

[29].   Maria Magdalane C., Kaviyarasu K., Judith Vijaya J., Jayakumar C., Maaza M., Jeyaraj B. J. Photochem. Photobiol., B., 2017, 169:110

[30]. Banerjee S., Devi P.S., Topwal D., Mandal S., Menon K. Adv. Funct. Mater., 2007, 17:2847

[31]. Ma Y., Wang X., Khalifa H.A., Zhu B., Muhammed M. Int. J. Hydrogen Energy., 2012, 37:19401

[32]. Soleimani F., Salehi M., Gholizadeh A. Ceram. Int., 2018, 45:9826.

[33]. Fu Y.P., Chen S.H., Huang J.J. Int. J. Hydrogen Energy., 2010, 35:745

[34]. Matmin J., Jalani M.A., Osman H., Omar Q., Ab’lah N., Elong K., Kasim M.F. Nanomaterials., 2019, 9:264

[35]. He H.Y., Lu J. Sep. Purif. Technol., 2017, 172:374

[36]. Mandal R.K., Purkayastha M.D., Majumder T.P. Optik. 2019, 180:174

[37]. Athawale A.A., Bapat M.S., Desai P.A. J. Alloys Compd., 2009, 484:211

[38]. Prabaharan D.M.D.M., Sadaiyandi K., Mahendran M., Sagadevan S. Mat. Res., 2016, 19:478

[39]. Nezamzadeh-Ejhieh A., Shams-Ghahfarokhi Z. J. Chem., 2013, 2013:11

[40]. Saleh R., Djaja N.F. Superlattices Microstruct., 2014, 74:217

[41]. Sanna V., Pala N., Alzari V., Nuvoli D., Carcelli M. Mater. Lett.,2016, 162:257

[42]. Raja V.R., Karthika A., Kirubahar S.L., Suganthi A., Rajarajan M. Solid. State. Ionics., 2019, 332:55

[43]. Josephine G.A.S., Ramachandran S., Sivasamy A. J. Saudi Chem Soc., 2015, 19:549

[44]. Zhang C., Hen H., Wang N., Chen H., Kong D. Ceram. Int., 2013, 39:3685-3

[45]. Chen C.C., Lu C.S., Chung Y.C., Jan J.L. J. Hazard. Mater., 2007, 141:520

[46]. Saikia L., Bhuyan D., Saikia M., Malakar B., Dutta D.K., Sengupt P. Appl. Catal. A-Gen., 2015, 490:42