Document Type : Original Article

Authors

1 Department of Biology, Ardabil Branch, Islamic Azad University, Ardabil, Iran

2 Department of Chemistry, Ardabil Branch, Islamic Azad University, Ardabil, Iran

3 PhD Student in Environmental Pollution, North Tehran Branch, Islamic Azad University, Tehran, Iran

Abstract

In this work, the synthesis of iron oxide nanoparticles (NPs) was done by the extract of Ramalina sinensis. Co-precipitation method was usedto synthesize the nano-particles, which is very fast, low cost, and eco-friendly. For the green synthesis of the iron oxide nanoparticles, the distilled extract of Ramalina sinensiswas utilized. Also, to confirm the synthesis of the nanoparticles, some techniques such as UV-Vis spectrophotometry, XRD, FT-IR, and FESEMEDX were used. In addition the antimicrobial activity of biosynthetic magnetite nanoparticles against bacterial strainswas evaluated. The uniform spherical nature of the iron oxide nanoparticles with the particle size 31.74 to 53.91 nm was observed in the FESEM images. In the spectrum obtained from the spectrophotometer, the peak at 310±5 nm indicated the electron transfer from oxygen to the iron. The iron oxide NPs depicted effective antibacterial probably against Gram-positive bacteria Staphylococcus aureusand Gram-negative bacteria Pseudomonas aeruginosa. Based on the obtained results, it can be stated that the powerful approach of green synthesis of magnetic iron oxide NPs using Ramalina sinensis has led to producingthe nanoparticles with high antimicrobial potential.

Graphical Abstract

The study of antibacterial properties of iron oxide nanoparticles synthesized using the extract of lichen Ramalina sinensis

Keywords

Main Subjects

[1]. Rajiv P., Bavadharani B., Kumar MN., Vanathi P. Biocatalysis and Agricultural Biotechnology, 2017, 12:45

[2]. Madhavi V., Prasad T., Reddy A.V.B., Reddy B.R., Madhavi G. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013, 116:17

[3]. Borcherding J., Baltrusaitis J., Chen H., Stebounova L., Wu C-M, Rubasinghege G., Mudunkotuwa I.A., Caraballo J.C., Zabner J., Grassian V.H. Environmental Science: Nano, 2014, 1:123

[4]. Groiss S., Selvaraj R., Varadavenkatesan T., Vinayagam R. Journal of Molecular Structure, 2017, 1128:572

[5]. Petcharoen K., Sirivat A. Materials Science and Engineering: B, 2012, 177:421

[6]. Daou T., Pourroy G., Bégin-Colin S., Grenèche J-M., Ulhaq-Bouillet C., Legaré P., Bernhardt P., Leuvrey C., Rogez G.Chemistry of Materials, 2006, 18:4399

[7]. Liu S., Zhang H., Swihart MT. Nanotechnology, 2009, 20:235603

[8]. Iranzad F., Gheibi M., Eftekhari M. International Journal of Environmental Analytical Chemistry, 2018, 98:16

[9]. Li Y., Park C-W. Langmuir, 1999, 15:952

[10]. Kennedy DA., Seely D. Expert Opinion on Drug Safety, 2010, 9:79

[11]. Beyth N., Houri-Haddad Y., Domb A., Khan W., Hazan R. Evidence-based Complementary and Alternative Medicine, 2015, 2015:16 pages

[12]. Çobanoğlu G., Sesal C., Gökmen B., Çakar S. South Western Journal of Horticulture, 2010, 1:153

[13]. Huneck S., Yoshimura I. Identification of Lichen Substances. edn.: Springer; 1996:11

[14]. Miao V., Coëffet-LeGal M-F., Brown D., Sinnemann S., Donaldson G., Davies J. Trends in Biotechnology, 2001, 19:349

[15]. Neuberger T., Schöpf B., Hofmann H., Hofmann M., Von Rechenberg B. Journal of Magnetism and Magnetic Materials, 2005, 293:483

[16]. Niemirowicz K., Piktel E., Wilczewska A.Z., Markiewicz K.H., Durnaś B., Wątek M., Puszkarz I., Wróblewska M., Niklińska W., Savage P.B. International Journal of Nanomedicine, 2016, 11:5443

[17]. Karlsson H.L., Gustafsson J., Cronholm P., Möller L. Toxicology Letters, 2009, 188:112

[18]. Kunzmann A., Andersson B., Vogt C., Feliu N., Ye F., Gabrielsson S., Toprak MS., Buerki-Thurnherr T., Laurent S., Vahter M. Toxicology and Applied Pharmacology, 2011, 253:81

[19]. Jeng H.A., Swanson J. Journal of Environmental Science and Health Part A, 2006, 41:2699

[20]. Kandpal N., Sah N., Loshali R., Joshi R., Prasad J. Journal of Scientific and Industrial Research, 2014, 73:87

[21]. Esmaeili A., Ghobadianpour S. International Journal of Pharmaceutics, 2016, 501:326

[22]. Jafari A., Ghane M., Sarabi M., Siyavoshifar F. Oriental Journal of Chemistry, 2011, 27:811

[23]. Seifi Mansour S., Ezzatzadeh E., Safarkar R. Asian Journal of Green Chemistry, 2019, 3:353

[24]. El-Kassas H.Y., Aly-Eldeen M.A., Gharib S.M. Acta Oceanologica Sinica, 2016, 35:89

[25]. Oya K., Tsuru T., Teramoto Y., Nishio Y. Polymer Journal, 2013, 45:824

[26]. Chaplin T.D., Clark R.J., Martinón-Torres M. Journal of Molecular Structure, 2010, 976:350

[27]. Manikandan A., Vijaya J.J., Mary J.A., Kennedy L.J., Dinesh A. Journal of Industrial and Engineering Chemistry, 2014, 20:2077

[28]. Senthil M., Ramesh C. Digest Journal of Nanomaterials & Biostructures (DJNB), 2012, 7:1655

[29]. Mashjoor S., Yousefzadi M., Zolgharnain H., Kamrani E., Alishahi M. Environmental Pollution, 2018, 237:50

[30]. Prabhu Y., Rao K.V., Kumari B.S., Kumar V.S.S., Pavani T. International Nano Letters, 2015, 5:85

[31]. Lee C., Kim J.Y., Lee W.I., Nelson K.L., Yoon J., Sedlak D.L. Environmental Science & Technology, 2008, 42:4927

[32]. Mahdavi M., Namvar F., Ahmad M., Mohamad R. Molecules, 2013, 18:5954