Document Type : Original Article


1 Department of Advance Interdisciplinary Studies, School of Engineering, University of Tokyo, Japan

2 Nakamura Laboratory, Research Cluster for Innovation, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan

3 Department of Electrical Engineering, School of Engineering, University of Tokyo, Japan


Electrochemical reduction of CO2 is so important in mitigating the greenhouse related environmental concerns. Recently, oxidized forms of metals instead of pure metals have gained a great deal of attention due to the difference in product selection between the two classes of electrode materials. Since copper has been widely used in producing carbon-intensive products, various studies have been dedicated to evaluate its oxidized form. In this research study, we focused on using cuprous oxide particles supported on hydrophobic carbon paper substrate. The structure of the carbon paper provides unique reaction sites while the micron-sized particles can help to provide new insight about using smaller surface area to volume ratio as compared to previous reports on oxidized copper nanoparticles. Formic acid, ethylene, and CO were produced as a result of our experiments which show improved product selection compared with the pure copper nanoparticles. The potential and time dependence of these products are presented in this study along with a discussion on the origin of CO2 reduction.

Graphical Abstract

Electrochemical reduction of CO2 using cuprous oxide particles supported on carbon paper substrate


[1]. Kumar B., Brian J., Atla V., Kumari S., Bertram K., White R., Spurgeon J. Catal. Today, 2016, 270:19
[2]. Hori Y., Modern Aspects of Electrochemistry, Springer, New York, 2008, pg 89
[3]. Kuhl K., Cave E., Abram D., Jaramillo T. Energy Environ Sci., 2008, 5:7050
[4]. Luna P.D., Quintero-Bermudez R., Dinh C., Ross M.B., Bushuyev O.S.,Todorovic P., Regier T., Kelley S., Yang P., Sargent E. Nat. Catal., 2018, 1:103
[5]. Lee C.W., Yang K.D., Nam D.H., Jang J.H., Cho N.H., Im S.W., Nam K.T. Adv. Mater., 2018, 30:1704717
[6]. Chen C., Sun X., Lu L., Yang D., Ma J., Zhu Q., Qian Q., Han B. Green Chem., 2018, 20:4579
[7]. Seunghwa L., Dahee K., and Jaeyoung L., Angew. Chem. Int. Ed., 2015, 54:14701
[8]. Frese K.W. Journal of Electrochemical Society, 1991, 138:3338
[9]. Le M., Ren M., Zhang Z., Sprunger P. T., Kurtz R. L., Flake J.C. Journal of the Electrochemical Society, 2011, 158:45
[10]. Li C.W., Kanan M.W. Journal of the American Chemical Society, 2012, 134:7231
[11]. Wang W., Ning H., Yang Z., Feng Z., Wang J., Wang X., Mao Q., Wu W., Zhao Q., Hu H., Song Y., Wu M. Electrochimica Acta, 2019, 306:360
[12]. Tan X., Yu C., Zhao C., Huang H., Yao X., Han X., Guo W., Cui S., Huang H., Qiu J. ACS Appl. Mater. Interfaces, 2019, 11:9904
[13]. Lee S., Ocon J. D., Son Y., Lee J. J. Phys. Chem. C., 2015, 119:4884
[14]. Kim D., Lee S., Ocon J. D., Jeong B., Lee J. K., Lee J., Phys. Chem. Chem. Phys., 2015, 17:824
[15]. Lum Y., Ager J.W. Angew. Chem. Int. Ed., 2018, 57:551
[16]. Eilert A., Cavalca F., Roberts F.S., Osterwalder J., Liu C., Favaro M., Crumlin E.J., Ogasawara H., Friebel D., Pettersson L.G., Nilsson A. J. Phys. Chem. Lett., 2018, 8:285
[17]. Burdyny T., Smith W.A. Energy Environ. Sci., 2019, 12:1442
[18]. Kas R., Kortlever R., de Wit P., Milbrat A., Luiten-Olieman M., Benes N., Koper M., Mul G. Nature Communications, 2016, 7:10748
[19]. Hana X., Wang M., Linh M., Bedford N., Woehl T., Thoi S. Electrochimica Acta, 2019, 297:545
[20]. Lee S., Kim D., Lee J. Angew. Chem. Int. Ed. Engl., 2015, 54:14701
[21]. Ren D., Ang BS-H., Yeo B.S. ACS Catalysis, 2016, 6:8239
[22]. Li C.W., Ciston J., Kanan M.W. Nature, 2014, 508:504
[23]. Kim D., Kley C.S., Li Y., Yang P. PNAS., 2017, 114:10560.
[24]. Ning H., Mao Q., Wang W, Yang Z., Wang X., Zhao Q., Song Y., Wu M. Journal of Alloys and Compounds, 2019, 785:7
[25]. Dang T., Le, T, Blanc E.F, Dang M. Adv. Nat. Sci. Nanosci. Nanotechnol., 2011, 2:15009
[26]. John W., Ayi A., Chinyere A., Providence A., Bassey I. Advanced Journal of Chemistry-Section A., 2019, 2:175
[27]. Gomaa E., Abdel H., Mahmoud M., El Kot D. Adv. J. Chem. A., 2019, 2:1
[28]. Ayesha K., Audi R., Rafia Y., Ren C. Int. Nano Lett., 2016, 6:21
[29]. Sachin S., Ashok B., Chandrashekhar M. J. Nano Electron. Phys., 2016, 8:01035
[30]. Chang T., Liang R., Wu P. Chen J.Y., Hsieh Y.C. Material Letters, 2009, 63:1001
[31]. Hori Y., Murata A., Takahashi R., Suzuki S. Chem. Lett., 1987, 16:1665
[32]. Hori Y., Murata A., Takahashi R. J. Chem. Soc., Faraday Trans., 1989, 85:2309
[33]. Bugayonga J., Griffin G.L. ECS Trans., 2013, 588:81
[34]. Wanatabe M., Shibata M., Kato A., Azuma M., Sakata T. J. Electrochem. Soc., 1991, 138:3382
[35]. Kim J.Y., Rodriguez J.A., Hanson J.C., Frenkel A.I., Lee P. J. Am. Chem. Soc., 2003, 125:10684
[36]. Maimaiti Y., Nolan M., Elliott S. Phys. Chem. Chem. Phys., 2014, 16:3036
[37]. Kooti M., Matouri L. Transaction F: Nanotechnology, 2010, 17:73
[38]. Zhang X., Lu X., Shen Y., Han J., Yuan L., Gong L., Xu Z., Bai X., Wei M., Tong Y., Gao Y., Chen J., Zhou J., Wang L.Z. Chem. Commun., 2011, 47:5804
[39]. Mandal L., Yang K.R., Motapothulav M.R,. Ren D., Lobaccaro P., Patra A., Sherburne M., Batista V.S., Yeo B.S., Ager J.W., Martin J. Venkatesan T. ACS Appl. Mater. Interfaces, 2018, 10:8574
[40]. Jeremy T., Chuan S., Etosha R., Toru H., David N., Kendra P., Christopher H., Nørskov J., Jaramillo T. ACS Catal., 2017, 7:4822
[41]. Peterson A.A., Abild-Pedersen F., StudtF., Rossmeisl J., Nørskov J. Energy Environ. Sci. 2010, 3:1311
[42]. Shin H.S., Song J.Y., Jiang Y., Mater. Lett. 2009, 63:39
[43]. Hori Y., Takahashi I., Koga O, Hoshi N. Journal of Physical Chemistry, 2002, 106:15
[44]. Baturina O., Lu Q., Padilla M., Le X., Li W., Serov A., Artyushkova K., Atanassov P., Xu F., Epshteyn A., Brintlinger T., Schuette M., Collins G. ACS Catal., 2014, 4:3682
[45]. Reske R., Mistry H., Behafarid F., Cuenya B.R., Strasser P. J. Am. Chem. Soc., 2014, 136:6978
[46]. Ko C., Lee W. Surf. Interface Anal., 2010, 42:1128
[47]. Meenesh R., Singha L., Clarka, B., Bella A. PNAS, 2015, 112:6111