Document Type : Short communication

Authors

1 Department of Physics And Industrial Physics, Faculty of Physical Science, Nnamdi Azikiwe University, Awka

2 Crystal Growth and Material Science Laboratory/Department of Physics and Astronomy, Faculty of Physical Sciences, University of Nigeria, Nsukka, Nigeria

Abstract

Synthesis and characterization fluorine-doped tin oxide thin film using spray pyrolysis were coated on a glass substrate by varying the atomizing voltage. The XRD analysis was carried out and the results showed that the deposited films are polycrystalline in nature having the characteristic peaks of tetragonal structure of SnO2. The observed peaks are (110), (101), (200), (211) and the preferential growth was found to be (110) direction. The I/V plots of the material deposited with 3.8 kV, 4.0 kV and 4.2 kV, which represent sample FT1-FT3 showed a non-linear plot and observed to be a non Ohmic semiconducting material. It was also noticed that as the atomizing voltage of the depositing material increases the thickness of the films increases. The resistivity of the material deposited increases and decreases at 4.0 kV as the atomizing voltage and thickness of the films increases. The electrical conductivity of the material deposited increases with respect to the atomizing voltage and thickness, respectively. It was observed that as the optical absorbance and reflectance decreased the wavelength of the incident radiation and transmittance enhanced as the wavelength of the incident radiation increased and the band gap energy of the films were observed to be at the range of 2.70-3.10 eV.

Graphical Abstract

Influence of atomizing voltage on fluorine doped tin oxide via spray pyrolysis technique

Keywords

[1]. Shanthi S., Subramanian C., Ramasamy P. Journal of Crystal Growth, 1999, 197:858
[2]. Abdullahi S., Moreh A.U., Hamza B., Wara M.A., Kamaluddeen H., Kebbe M.A., Monsuorat U.F. International Journal of Recent Research in Physics and Chemical Sciences, 2015, 1:1
[3]. Chamberlin R.R., Skarman J.S. Journal of the Electrochemical Society, 1966, 113:86
[4]. Filipovic L., Siegfried S., Giorgio C.M., Elise B., Stephan S., Anton K., Jordi T., Jochen K., Jorg S., Franz S. Microelectronics Engineering, 2013, 117:57
[5]. Hongli Z. International Journal of Applied Glass Science, 2013, 4:242
[6]. Jariwala C., Dhivya M., Rane1 R., Chauhan N., Rayjada P.A., Raole P.M., John P.I. Journal of Nano and Electronics Physics,2013, 5:1
[7]. Jaworek A., Sobczyk A.T., Krupa A., Lackowski M., Czech T. Journal of Technical Sciences, 2009, 57:63
[8]. Babar A.R., Shinde S., Moholkar A.V., Bhosale C.H., Kim J.H., Rajpure K.Y. Journal of Semiconductors, 2011, 32:1
[9]. Patrick M.M., Musembi R., Munji M., Odari B., Munguti L., Ntilakigwa A.A., Nguu J., Aduda B., Muthoka B. Advances in materials, 2015, 4:51
[10]. Mwathe  P.M., Musembi R., Munji M., Odari B., Munguti L., Ntilakigwa A.A., Nguu J., Aduda B., Muthoka B. Advances In Materials, 2014a, 3:38
[11]. Odari B.M., Musembi R.J., Mageto M.J., Othieno H., Gaitho F., Mghendi M., Muramba V. American Journal of Materials Science., 2013, 3:91
[12]. Subramanian N.S., Santhi B., Sundareswaran S., Venkatakrishnan K.S. Metal-Organic and Nano-Metal Chemistry., 2006, 36:131
[13]. Ravichandran k., Muruganantham G., Sakthivel B., Philominathan P. Journal of Ovonic Research, 2009, 5:63
[14]. Dainius P., Ludwig J.G. Journal of Electroceramics, 2005, 14:103
[15]. Balkenende A.R., Bogaerts A., Scholtz J.J., Tijburg R.M., Willems H. Philips Journal of Research, 1996, 50:365
[16]. Jaworek A., Sobczyk A.T., Krupa A., Lackowski M., Czech T. Journal of Technical Sciences, 2009, 57:63
[17]. Kandasamy P., Lourdasamy A. International Journal of Physics, 2014, 9:261
[18]. Yadav A.A., Masumdar E.U., Moholkar A.V., Neumann-Spallart M., Rajpure K.Y., Bhosale C.H. J. Alloys Compd., 2009, 488:350
[19]. Noh S.I., Ahn H.J., Riu D.H. Ceramics Int., 2012, 38:3735
[20]. Chantarat N., Yu-Wei C., Shu-Han H., Chin-Ching L., Mei-Ching C., San-Yuan C. ECS Journal of Solid State Science and Technology, 2013, 2:131
[21]. Arle R.N., Khatik B.L. International Journal of Chemical and Physical Sciences, 2014, 3:83
[22]. Agbim E.G., Ikhioya I.L., Agbakwuru C.B., Oparaku O., Ugbaja C.M. International Journal of Scientific & Engineering Research, 2019, 10:707
[23]. Sharma A., Prakah D., Verma K.D. Optoelectronics and Advanced Materials-Rapid Communications, 2007, 1:683
[24]. Jeyasubramanian K.T., Gokul S.R. Achievers of Material Science and Engineering, 2016, 78:66
[25]. Kar S., Kundoo S. International Journal of Science and Research, 2015, 4:530
[26]. Karthick P., Divya V., Suja S., Sridharan M., Jeyadheepan K., Asian Journal of Applied Sciences, 2015, 8:259
[27]. Kandasamy P., Lourdasamy A. International Journal of Physics, 2014, 9:261
[28]. Napi M.L., Maarof M.F., SoonC.F., Nayan N., Fazli I.M., Hamed K.A, Mokhtar S.M., Seng N.K., Ahmad M.K., Suriani A.B., Mohamed A. Journal of Engineering and Applied Science, 2016, 11:8800
[29]. Saipriya M., Sultan R., Singh I. Physica B: 2011, 406:812
[30]. Yadav A.A., MasumdarE.U., Moholkar A.V., Neumann-Spallart M., Rajpure K.Y., Bhosale C.H. J. Alloys Compd, 2009, 488:350
[31]. Ziad Y. B, Kelly P. J., Glen W., Boardman J. Coatings, 2014, 4:732
[32]. Agbim E. G., Ikhioya I.L., Ekpunobi A.J. IOSR Journal of Applied Physics, 2019, 11:70
[33]. Kim K.S., Yoon S.Y., Lee W.J., Kim K.H. Surface and Coatings Technology, 2001, 138:229