Document Type : Original Article

Authors

1 Department of Physics, Sri Akilandeswari Women’s College, Wandiwash-604408, Tamil Nadu, India.

2 Department of Physics, M.V. Muthiah Government Arts College for Women, Dindigul- 624 001,Tamil Nadu, India.

3 Department of Physics ,Thiruvalluvar University College of Arts & Science, Thennangur-604408, Tamil Nadu, India.

4 Tamil Nadu State Council for Science and Technology (TNSCST), DOTE Campus, Chennai-600 025, Tamil Nadu, India.

Abstract

Nanocrystals of ZnO have been prepared using vitex negundo leaf extract via a simple green method. The confirmation of ZnO formation was carried out by UV–Vis-diffuse reflectance spectroscopy (UV-Vis DRS). The prepared nanocrystals were further characterized by photoluminescence (PL), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Field emission-scanning electron microscopy (FE-SEM) and Transmission electron microscopy (TEM). FE-SEM shows the ZnO nanoparticles are nanoplates like structure. With the aim of assessing the photocatalytic activities of ZnO nanocrystals the degradation of methylene blue (MB) under UV radiation was analyzed. Further, the antibacterial activities of synthesized ZnO nanoparticles were screened against S. aureus, S. paratyphi, V. cholerae, and E. coli.

Graphical Abstract

Vitex negundo leaf extract mediated synthesis of ZnO nanoplates and its antibacterial and photocatalytic activities

Keywords

Main Subjects

 1. Z. Gao, Y. Gu, Y. Zhang, (2010) J. Nanomater., 10: 1-5
2. S. Cho, J. Jang, S. Jung, B.R. Lee, E. Oh, K. Lee, (2009) Langmuir., 25: 3825–3831.
3. B.S. Ong, C.S. Li, Y.N. Li, Y.L. Wu, R. Loutfy, (2007) J. Am. Chem. Soc., 129:2750–2751.
4. J.J. Wu, Y.R. Chen, W.P. Liao, C.T. Wu, C.Y. Chen, (2010) ACS Nano., 4:5679–5684.
5. D. Choi, M.Y. Choi, W.M. Choi, H.J. Shin, H.K. Park, J.S. Seo, J. Park, S.M. Yoon, S.J. Chae, Y.H. Lee, S.W. Kim, J.Y. Choi, S.Y. Lee, J.M. Kim, (2010) Adv. Mat., 22:2187–2192.
6. M.J.S. Spencer, I. Yarovsky, (2010) J. Phys. Chem. C., 114:10881–10893.
7. Z. Han, L. Liao, Y. Wu, H. Pan, S. Shen, J. Chen, (2012) J. Hazard. Mat., 217:100–106.
8. A. Yadav, V. Prasad, A.A. Kathe, S. Raj, D. Yadav, C. Sundarmoorthy, N. Vigneshvaran, (2006) Bull. Mater. Sci., 29: 641-645.
9. C. Lui, Y. Masuda, Y. Wu, O. Takai, (2006) Thin Sol. Films, 503:110–114.
10. D.C. Look, D.C. Reynolds, C.W. Litton, (2002) Appl. Phys. Lett., 81: 1830–1832.
11. Y.C. Kong, D.P. Yu, B. Zhang, (2001)Appl. Phys. Lett.,78: 407–409.
12. B.J. Jin, S. Im, S.Y. Lee, (2002) Thin Sol. Films., 366 :107–110.
13. V.R. Shinde, C.D. Lokhande, S.H. Han, (2005) Appl. Surf. Sci., 245:407–413.
14. B. Liu, H.C. Zeng, (2003) J. Am. Chem. Soc., 125: 4430–4431.
15. Y. Ohya, T. Ogata, Y. Takahashi, (2005) J. Ceram. Soc. Jpn., 113:220–225.
16. L. Znaidi, C. Sanchez, A.V. Kanaev, (2003) Thin Sol.Films., 428:257–262.
17. M.S. Tokumoto, S.H. Pulcinelli, V. Briois, (2003) J. Phys. Chem. B., 107 :568–574.
18. A. Senthilraja, B. Subash, B. Krishnakumar, D. Rajamanickam, M. Swaminathan, M. Shanthi, (2014) Mat. Sci. Semiconductor Proc., 22: 83–91.
19. D. Kelman, Y. Kashman, E. Rosenberg, M. Ilan, I. Iirach, Y. Loya, (2001) Aquat. Microb. Ecol.,24:9–16.
20. K.V. Vanheusden, W.L. Warren, C.H. Seager, (1996) J. Appl. Phys., 79:7983-7990.
21. M. Anbuvannan, M. Ramesh, G. Viruthagiri, N. Shanmugam, (2015) Mater Sci Semicond Process., 39 :621–628.
22. Y. W. Heo, D. P. Norton, S. J. Pearton, (2005) J. Appl. Phys., 98: 073502.
23. B. Lin, Z. Fu, Y. Jia, (2001) Appl. Phys. Lett., 79: (7) 943.
24. M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, (2001) Adv. Mater,. 13: 113.
25. S. Mridha, D. Basak, (2007) Mater. Res. Bull. 42:875–882.
26. D. Gnanasangeetha, D. Sarala Thambavani, (2013) Res. J. Mat. Sci. 1:1–8.
27. R. Sathyavathi, M.B. Krishna, S.V. Rao, R. Saritha, D.N. Rao, (2010) Adv Sci Lett 3:1–6.
28. S. Cai, B.R. Singh, (2004) Biochem. 43: 2541–2549.
29. S. Nagarajan K. Arumugam Kuppusamy,(2013) J.of Nanobiotech,11:39.
30. J. Sawai, (2003) J. Micro. Meth. 54 :177–182.
31. J. Sawai, T. Yoshikawa, (2004) J. App. Micro. 96 :803–809.
32. S. Gunalana, R. Sivaraja, V. Rajendran, (2012) Prog. Nat. Sci. Mat. Inter. 22:693–700.