Document Type : Short communication

Authors

Department of Physics,Thiagarajar College of Engineering,Madurai 625015,India

Abstract

Nanocomposites are novel materials which are yet to be explored and utilised to its complete potential. Nanocomposites can be tailored by the volume fraction of the matrix, fibre and also by the size and shape of the nanophase material in the composite. Preparing nanocomposite with a desired shape and size remains a challenge. In the present work nanocomposites of SnO–Fe2O3.are prepared by a sol gel route with Ferric chloride and Tin chloride as precursors. The prepared nanocomposites are characterised by X-ray Diffraction(XRD), Ultraviolet Visible Spectroscopy (UV),Scanning Electron microscopy(SEM) and Fourier Transform Infrared Spectroscopy(FTIR). The crystallite size obtained is approximately 60 nm, with a band gap of 3.55 eV. The band gap of the composite could further be tuned with nanosize.

Graphical Abstract

Preparation and characterisation of SnO–Fe2O3 nanocomposites

Keywords

Main Subjects

1. P.H.C. Camargo, K.G. Satyanarayana, and F. Wypych, (2009) Mater. Res., 12:1–39 .
2. A. Ghorbani-Choghamarani, M. Mohammadi, T. Tamoradi, and M. Ghadermazi, (2018) Polyhedron, .
3. A. Praveen Kumar, K. Sudhakara, B.P. Kumar, A. Raghavender, S. Ravi, D.N. Keniec, and Y.-I. Lee, (2018) Asian J. Nanosci. Mater., 1:172–182.
4. L.L. Hench and J.K. West, (1990) Chem. Rev., 90:33–72 .
5. A. Ghorbani-Choghamarani, M. Mohammadi, and Z. Taherinia, (2018) J. Iran. Chem. Soc., (Article in Press) .
6. J. Sharma, R. Bansal, P. Soni, S. Singh, and A. Halve, (2018) Asian J. Nanosci. Mater., 1:135–142 .
7. R.A. Meyer and J.J. Green, (2015) .
8. P. Gharbani and A. Mehalizadeh, (2018) Asian J. Nanosci. Mater., 27–36 .
9. S. Paulose, R. Raghavan, and B.K. George, (2016) RSC Adv., 6:45977–45985 .
10. M. Chastellain, A. Petri, A. Gupta, K.V. Rao, and H. Hofmann, (2004) Adv. Eng. Mater., 6:235–241 .
11. A.-R.M. Abdul-Raheim, M.E.-S. Shimaa, K.F. Reem, and E.A.-R. Manar, (2016) Adv. Mater. Lett, 7:402–409 .
12. M. Batzill and U. Diebold, (2005) Prog. Surf. Sci., 79:47–154 .
13. R.S. Kalubarme, J.-Y. Lee, and C.-J. Park, (2015) ACS Appl. Mater. Interfaces, 7:17226–17237 .
14. Y. Pimtong-Ngam, S. Jiemsirilers, and S. Supothina, (2007) Sensors Actuators A Phys., 139:7–11 .
15. J. Watson, (1984) Sensors and Actuators, 5:29–42 .
16. M. Jafari, M. Salehi, and M. Behzad, (2018) Int. J. Nano Dimens., 9:179–190 .
17. W.-W. Wang and J.-L. Yao, (2009) J. Phys. Chem. C, 113:3070–3075 .
18. T.-D.N. Phan, H.-D. Pham, T.V. Cuong, E.J. Kim, S. Kim, and E.W. Shin, (2009) J. Cryst. Growth, 312:79–85.