Document Type : Review Article

Authors

1 Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist.-Dhule (M.S), India

2 Department of Pharmaceutical Quality assurance and Regulatory affairs, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist.-Dhule (M.S), India

Abstract

In the biomedical and diagnostic fields, quantum dots (QDs) are the most special, effective, and minimally invasive developments. Over the most recent two decades, researchers and scientists have indicated tremendous enthusiasm for nanostructured materials as it gives some trademark properties that are the middle of the road between the mass and sub-atomic levels. It is inside this nanometer size system that semiconductors change from carrying on as mass materials to those anticipated for individual or little gatherings of dots and in like manner start to display uncommon marvels. Quantum dots are nanoscale semiconductors that have the ability to fluorescence when activated by a light source, such as a laser. While this early research focused primarily on CdSe nanocrystals, the field has since expanded to include several classes of nanoparticles with various shell structures. The optical properties and theoretical biocompatibility of the resulting structures can be profoundly affected by such variations. Although quantum dots have mostly been utilized for imaging and sensing, further evidence of their use as therapeutics is emerging. The progress made in designing quantum dots for in vitro and in vivo applications is discussed in this work.

Graphical Abstract

Fundamental features of quantum dots and their diagnostic applications

Keywords

Main Subjects

[1]. Ekimov A.I., Hache F., Schanne-Klein M.C., Ricard D., Flytzanis C., Kudryavtsev I.A. J Opt Soc Am B., 1994, 11:524
[2]. Pisanic T.R., Zhang Y., Wang T.H. Analyst 2014, 139:2968
[3]. Karmakar R. a Sci Annu., 2015, 2:116
[4]. Jaiswal J.K., Goldman E.R., Mattoussi H., Simon S.M. Nat Methods., 2004, 1:73
[5]. Borse V., Thakur M., Sengupta S., Srivastava R. Sensors Actuators, B Chem., 2017, 248:481
[6]. Wilkins M.D., Turner B.L., Rivera K.R., Menegatti S., Daniele M. Sens Bio-Sensing Res., 2018, 21:46
[7]. Chen W., Lv G., Hu W., Li D., Chen S., Dai Z. Nanotechnol Rev., 2018, 7:157
[8]. Zhang Y., Wang T.H. Theranostics 2012, 2:631
[9]. Patil P.O., Pandey G.R., Patil A.G., Borse V.B., Deshmukh P.K., Patil D.R., Tade R.S., Nangare S.N., Khan Z.G., Patil A.M., More M.P., Veerapandian M., Bari S.B. Biosens Bioelectron., 2019, 139:111324
[10]. Borse V.B., Konwar A.N., Jayant R.D., Patil P.O. Drug Deliv Transl Res., 2020, 10:878
[11]. Shi J., Tian F., Lyu J., Yang M. J Mater Chem B., 2015, 3:6989
[12]. Li Y., Shu H., Wang S., Wang J. J Phys Chem C., 2015, 119:4983
[13]. Ekimov A.I., Hache F., Schanne-Klein M.C., Ricard D., Flytzanis C., Kudryavtsev I.A., Yazeva  T.V., Rodina A.V., Efros A.L. J Opt Soc Am B., 1994, 11:524
[14]. Ithurria S., Tessier M.D., Mahler B., Lobo R.P.S.M., Dubertret B., Efros A.L. Nat Mater 2011, 10:936
[15]. Wang H., Wang H., Liang R., Ruan K. Acta Biomateria et Biophysica Sinica., 2004, 36:681
[16]. Radenkovic D., Kobayashi H., Remsey-Semmelweis E.,  Seifalian A.M. Nanomedicine: Nanotechnology, Biology and Medicine, 2016, 12:1581
[17]. Gao X., Xing Y., Chung L.W.K., Nie S. Prostate Cancer: 2007, 231. DOI:10.1007/978-1-59745-224-3_13
[18]. Hu W., Fang M., Zhao H., Yan S., Yuan J., Peng C., Yang G.F., Li Y., Li J.D. Biomaterials., 2014, 35:4125
[19]. Lee K.H., Galloway J.F., Park J., Dvoracek C.M., Dallas M., Konstantopoulos K., Konstantopoulos K., Maitra A., Searson P.C. Nanomedicine Nanotechnology, Biol Med 2012, 8:1043
[20]. Alam F., Yadav N. J Breast Cancer 2013, 16:1
[21]. Fogel P.I. Akush Ginekol (Sofiia), 1982, 60:28
[22]. Pawar R.S., Upadhaya P.G., Patravale V.B. Elsevier Inc., 2018, 621. DOI: 10.1016/B978-0-12-813351-4.00035-3
[23]. Younis M.R., He G., Lin J., Huang P. Front Chem., 2020, 8:1
[24]. Pinaud F., Clarke S., Sittner A., Dahan M. Nat Methods, 2010, 7:275
[25]. Chan W.C.W., Maxwell D.J., Gao X., Bailey R.E., Han M., Nie S. Current Opinion in Biotech 2002, 13:40
[26]. Borse V., Srivastava R. Sensors Actuators, B Chem 2019, 280:24
[27]. Shibu E.S., Ono K., Sugino S., Nishioka A. Yasuda A., Shigeri Y., Wakida S.I., Sawada M., Biju V. Yasuda ACS Nano Defining nanosci and Nanotechnol., 2013, 7:9851
[28]. Xu L., Wen Y., Pandit S., Mokkapati V.R.S.S., Mijakovic I., Li Y., Ding M., Ren S., Li W., Liu G. BMC Chemistry, 2019, 13:112
[29]. Ma L. SOJ Biochem., 2016, 2:1
[30]. He Z.X., Shi L.C., Ran X.Y., Li W., Wang X.L., Wang F.K. Front Microbiol., 2016, 7:1
[31]. Zhang H., Yee D., Wang C. Nanomedicine., 2008, 3:83
[32]. Gao X., Cui Y., Levenson R.M., Chung L.W.K., Nie S. Nat Nanotech., 2004, 22:969
[33]. Abbasi E., Kafshdooz T., Bakhtiary M., Nikzamir N., Nikzamir N., Nikzamir M., MohammadianM., Akbarzadeh A. Artificial Cells, Nanomedicine, and Biotechnology, 2016, 44:891
[34]. Xing Y., Rao J. Diagnostics & in Vivo Imaging., 2008, 4:307
[35]. Qi S., Jiang Y., Li Z., Li Q., Zhang H., Xie N. 7th International Conference on BioMedical Engineering and Informatics, 2014:269 DOI: 10.1109/BMEI.2014.7002783
 [36]. Maldonado P.O., Chavez-Alvarado A.K., Gutierrez F.J.R., Miranda J.R., Velazquez D.Y.M., Barron M.A. García E.G. Open J Appl Sci., 2018, 08:441
[37]. Correa-Espinoza S., Rodríguez-González C.A. J Non-Oxide Glas., 2018, 10:7
[39]. Kazemi-Darsanaki R., Azizzadeh A., Nourbakhsh M., Raeisi G., Azizollahi Aliabadi M. J Biol Today’s World., 2013, 2:20
[40]. Samir T.M., Mansour M.M.H., Kazmierczak S.C., Azzazy H.M.E. Nanomedicine, 2012, 7:1755
[41]. Abbasi E., Kafshdooz T., Bakhtiary M., Nikzamir N., Nikzamir N., Nikzamir M., Mohammadian M., Akbarzadeh A., Artif Cells, Nanomedicine Biotechnol., 2016, 44:885
[42].      Gokarna A., Jin L.H., Jun S.H., Cho Y.H., Yong T.L., Bong H.C. Proteomics., 2008, 8:1809
[43]. Matabaro E., Ishimwe N., Uwimbabazi E., Lee B.H. Compr Rev Food Sci Food Saf., 2017, 16:808
[44]. Wang Y., Dossey A.M., Froude J.W., Lubitz S., Tzur D., Semenchenko V., Wishart D.S.  Nanomedicine., 2008, 3:475
[45]. Frascione N., Gooch J., Abbate V., Daniel B. RSC Adv., 2015, 5:6595
[46]. Sharma A., Rao V.K., Kamboj D.V., Gaur R., Upadhyay S., Shaik M. Biotechnol Reports., 2015, 6:129
[47]. Zheng L.L., Li C.M., Zhen S.J., Li Y.F., Huang C.Z. Nanoscale., 2017, 9:7880
[48]. Bentzen E.L., House F., Utley T.J., Crowe J.E., Wright D.W. Nano Lett, 2005, 5:591
[49]. Chou K.F., Dennis A.M. Sensors (Switzerland) 2015, 15:13288
[50]. Singh P.A., Bajwa N. Int J Pharm Sci Res 2016, 7:1360
[51]. Chinnathambi S., Shirahata N. Science and Technology of Advanced Materials, 2019, 20:337
[52]. Zhu H., Sikora U., Ozcan A. Analyst, 2012, 137:2541
[53]. Zhao Y., Chen F., Li Q., Wang L., Fan C. Chem Rev., 2015, 115:12491
[54]. Wang Q., Chao Y. J Biomed Res., 2018, 32:91
[55]. Mozhgani S.H., Kermani H.A., Norouzi M., Arabi M., Soltani S. Heliyon, 2020, 6:e04048
[56]. Li M., Chen T., Gooding J.J., Liu J. ACS Sensors 2019, 4:1732
[57]. Nemati A. Iran J Mater Sci Eng 2020, 17:1
[58]. Perini G., Palmieri V, Ciasca G, De Spirito M, Papi M. Int. J. Mol. Sci. 2020; 21:3712
[59]. Konwar A.N., Borse V. Sensors Int., 2020, 1:100015
[60]. Petryayeva E., Algar W.R., Medintz I.L. Appl Spectrosc., 2013, 67:215
[61]. Fang M., Chen M., Liu L., Li Y. J Biomed Nanotechnol., 2017, 13:1
[63]. Yezhelyev B.M.V., Al-hajj A., Morris C., Marcus A.I., Liu T., Lewis M. Adv Mat., 2007, 19:3146
[64]. Pathak S., Cao E., Davidson M.C., Jin S., Silva G.A. Nano Letters., 2006, 26:1893
[65]. Kovtun O., Tomlinson I.D., Bailey D.M., Thal L.B., Emily J., Harris L., Frankland M.P., Ferguson R.S., Glaser Z., Greer IV J., Rosenthal S.J. Chem Phys Lett., 2018, 706:741
[66]. Qi L., Gao X. Expert Opin Drug Deliv., 2008, 5:263
[67]. Dey N., Rao M. Int J Res Pharm Biomed Sci., 2011, 2:448
[68]. Gao X., Cui Y., Levenson R.M., Chung L.W.K., Nie S. Nat Biotechnol., 2004, 22:969
[69]. Ballou B., Lagerholm B.C., Ernst L.A., Bruchez M.P., Waggoner A.S. 2004, 15:79
[70]. Yang H., Li D., He R., Guo Q., Wang K., Zhang X., Huang P., Cui D. Nanoscale Research Letters, 2010, 5:875
[71]. Zhao M.X., Zhu B.J. Nanoscale Res Lett., 2016, 11:207
[72]. Yang Z., Zhang Y., Yang Y., Sun L., Han D., Li H., Wang C. Nanomedicine Nanotechnology, Biol Med., 2010, 6:427
[73]. Azzazy H.M.E., Mansour M.M.H., Kazmierczak S.C. Clin Chem., 2006, 52:1238
[74]. Parak W.J., Boudreau R., Parak B.W.J., Boudreau R., Gros M. Le, Gerion D., Williams S.C., Alivisatos A.P., Larabell C. 2002, 4095:10
[75]. Carbary-ganz J.L., Barton J.K., Carbary-ganz J.L., Barton J.K., Utzinger U. J Biomed Optics., 2019, 8:086003
[76]. Medintz I.L., Deschamps J.R. Current Opi in Biotech., 2006, 17:17
[77]. Zhang Y., Liu Y., Li C., Chen X., Wang Q. J. Phys. Chem. C, 2014, 118:4918
[78]. Zhang P., Lu H., Chen J., Han H., Ma W. Theranostics., 2014, 4:307
[79]. Sapsford K.E,. Pons T., Medintz I.L., Mattoussi H. Sensors, 2006, 6:925
[80]. Stroh M., Zimmer J.P., Duda D.G., Levchenko T.S., Cohen K.S., Brown E.B., Scadden D.T., Torchilin V.P., Bawendi M.G., Fukumura D.,
Jain R.K. Nat Med., 2005, 11:678
[81]. Li Y., Peng C.W. J Nanomater., 2010, 2010
[82]. Takagahara T., Takeda K. Phys Rev B., 1992, 46:15578
[83]. Chomoucká J., Drbohlavová J., Adarrr V., Kizek R., Hubálek J. Nano-Struc and Nano-Obj., 2017, 12:46
[84]. Mazumder S., Dey R., Mitra M.K., Mukherjee S., Das G.C. J Nanomater., 2009, 2009:17 pages, DOI:10.1155/2009/815734
[85].      Koole R., Mulder W.J.M., Schooneveld M.M. Van, Strijkers G.J., Meijerink A., Nicolay K. Wiley interdis rev: Nano med and Nano biotech., 2009, 1:475
[86]. Grosjean R., Delacroix S., Gouget G., Beaunier P., Ersen O., Ihiawakrim D., Dalt Trans., 2017, 47:7634
[87].      Jokerst J.V., Ramanathan A., Christodoulides N., Floriano P.N., Pollard A.A., Simmons G.W., Wong J., Gage C., Furmaga W.B., Redding S.W., McDevitt J.T. Biosens Bioelectron., 2009, 24:3622
[88]. Xing Y., Xia Z., Rao J. IEEE Trans Nanobioscience., 2009, 8:4
[89]. Choi Y.J., Kim Y.J., Lee J.W., Lee Y., Lim Y.B., Chung H.W. J Nanosci Nanotechnol., 2012, 12:2160
[90]. Pericleous P., Gazouli M., Lyberopoulou A., Rizos S., Nikitas N., Efstathopoulos E.P. Int J Cancer., 2012, 131:519
[91]. Chen Z., Liang R., Guo X., Liang J., Deng Q., Li M., An T., Liu T., Wu Y. Biosens Bioelectron., 2017, 91:60