Document Type : Original Article

Authors

1 Polymer and Functional Materials Division, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Habsiguda, Hyderabad -500007, India

2 Academy of Scientific and Innovative Research (AcSIR), Ghaziabad – 201 002, India

Abstract

In the present study we report a simple eco-friendly hydrothermal protocol for the synthesis of molybdenum oxide (MoO3) nanoparticles at various temperatures i.e., 80-200 °C at intervals of 20 °C designated as S1-S6 sequentially with time duration of 4 h for each batch. The synthesized samples were characterized by X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Fourier Transform Infra-red (FTIR), UV- Visible Diffuse Reflectance (UV-Vis DRS), Laser Raman, Cyclic Voltammetry (CV), X-Ray Photoelectron Spectroscopy (XPS) and Transmission Electron Microscopy (TEM) to find out their elemental composition, structure, morphology and the optical band gap. The XRD analysis indicates well-crystallized orthorhombic structure with preferred orientation along (210) plane. The presence of O-Mo-O stretching vibration was observed by FTIR analysis The gas sensing studies were carried out to examine the material’s Sensitivity over a temperature range of 50oC to 400oC for various gas concentrations i.e. 200-1000 ppm of CO2 gas. The sensor had a Sensitivity of S=68.5% for S4 sample at an optimum temperature of 200 °C. The adsorption of desired gas on the material correlated well with the particle size of material at different temperature. The response and recovery times were 50 s and 40 s respectively.

Graphical Abstract

Synthesis, structural evaluation of molybdenum oxide (MoO3) nanoparticles and its application as CO2 gas sensor

Keywords

Main Subjects

[1]. Zhenfeng B., Takashi T., Peng Z., Mamoru F., Tetsuro M. Nature Communications, 2014, 5:30
[2]. Lee C.Y., Li S.Y., Lin P., Tseng T.Y. IEEE Trans. Nanotechnol., 2006, 5:216
[3]. Li S.Y., Lin P., Lee C.Y., Tseng T.Y. J. Appl. Phys., 2004, 95:3711
[4]. Bai S.N., Tseng T.Y., Thin Solid Films, 2006, 515:872
[5]. Wang Z., Song J. Science, 2006, 312:242
[6]. He H. Jr., Hsin C.L., Liu J., Chen L.J., Wang Z.L. Adv. Mater., 2007, 19:781
[7]. Ra H.W., Choi K.S., Kim J.H., Hahn Y.B., Im Y.H. Small, 2008, 4:1105
[8]. Kosta P., Giorgos A., Dimitrios A., Ahmed M., Umar D., Ioannis T., William I. M., Arokia N. and  George A. Appl. Phys. Lett., 2020, 116:163505
[9]. Marabelli F., Parraviciny G.B., Drioli F.S. Phys. Rev. B., 1995, 52:1433
[10]. Chen J., Deng S.Z., She J.C., Xu N.S., Zhang W.X., Wen X.G., Yang, S.H. J. Appl. Phys., 2003, 93:1744
[11]. Chowdhuri A., Gupta V., Sreenivas K., Kumar R., Mozumdar S., Patanjali P.K. Appl. Phys. Lett., 2004, 84:1180
[12]. Madhuri M., Subrata K., Sujit Kumar G., Sudipa P., Tapan K. S., Yusuf S.M., Tarasankar P. J. Collo. Inter. Sci., 2005, 286:187
[13]. Beek B.W.J.E., Slooff L.H., Wienk M.N., Kroon J.M., Janseen R.A.J. Adv. Funct. Mater., 2005, 15:1703
[14]. Sheng X., Zhong L.W. Nano Res., 2011, 4:1013
[15]. Olson D.C., Piris J., Colins R.T., Shaheen S.E., Ginley D.S. Thin Solid Films, 2006, 496:26
[16]. Xu Z.X., Roy V.A.L., Stallinga P., Muccini M., Toffanin S., Xiang H.F., Che C.M. Appl. Phys. Lett., 2007, 90:223505
[17]. Fernandes D.M., Silva R., Winkler Hechenleitner A.A., Radovanovic E., Custódio Melo M.A., Gómez Pineda E.A., Mater. Chem. Phy., 2009, 115:110
[18]. Jian F.L., Li B.L., Xue H.S., Kai D., Jing N., Chao J.L., Wei S.L. Langmuir, 2013, 29:13975
[19]. Barsan N., Weimar U., J. Phys. Condens. Matter., 2003, 15:813
[20]. Yamazoe N., Shimanoe K. J. Sens., 2009, 875704:21 pages
[21]. Sarala Devi G., Takeo H., Yasuhiro S., Makoto E. Sensors and Actuators B., 2002, 87:122
[22]. Tomescu A., Simion C.E., Alexandrescu R., Morjan I., Scarisoreanu M. Romanian J. Inf. Sci. & Tech. 2008, 11:85
[23]. Gajendiran J., Rajendran V. Materials Letters, 2014, 116:311
[24]. Saravanana R., Karthikeyan S., Gupta V.K., Sekaran G., Narayanan V., Stephen A. Materials Science and Engineering: C, 2013, 33:91
[25]. Habibi M.H., Karimi B., Zendehdel M., Habibi M. Spectrochim Acta: A Mol Biomol Spectrosc., 2013, 116:374
[26]. Jianyu Y., Shendong Z., Xiaoyong X., Wenchang Z., Bing F., Jingguo H. J. Materials Chemistry: A, 2015, 3:1199
[27]. Petetin L., Berger F., Chambaudet A., Planade R. Sensors and Actuators B: Chemical, 2001, 78:166
[28]. Niskanen A., Varpula A., Utriainen M., Natarajan G., Cameron D. Sensors and Actuators B: Chemical, 2010, 148:227.
[29]. Yadav B.C., Richa S., Dwivedi C.D., Pramanik P., Sensors and Actuators B: Chemical, 2008, 131:216
[30]. Manasa M.V., Sarala Devi G., Prasada Reddy P.S., Sreedhar B. Materials Research Express, 2019, 6:125041
[31]. Rosetti R., Nakahara S., Brus L.E. Journal of Chemical Physics, 1983, 79:1086
[32]. Hübner M., Sinion C., Haensch A., Barsan N. and U. Sensors and Actuators B: Chemical, 2010 151:103
[33]. Ganguly A., George R. Bulletin of Materials Science, 2007, 30:183
[34]. Nagabhushana G.P., Samrat D., Chandrappa G.T. RSC Advances, 2014, 4:56784
[35]. Arumugam M., Gang-Juan L., Chin-Yi C., Jing-Heng C. Materials Research Bulletin, 2015, 62:184
[36]. Manasa M.V., Prasada Reddy P.S., Adi Narayana Reddy B., Sarala Devi G. Journal of Advanced Physics, 2018, 7:1