Document Type : Original Article

Authors

Department of Chemistry, Ardabil Branch, Islamic Azad University, Ardabil, Iran

Abstract

This study focuses on the utilization of ZnO (as synthetic) and mango peel (natural adsorbent)  to remove blue 221 dye from aqueous solutions. First, ZnO nanoparticles (NPs) were synthesized and detected using the descriptor-based techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), N2 adsorption/desorption isotherms (BET), and X-ray diffraction (XRD). Various operational parameters including adsorbent concentration, pH, adsorbent dose, contact time, and stirring speed were investigated. The obtained kinetic results demonstrated great compatibility of the pseudo-second-order model with the experimental data. The effects of thermodynamic parameters were calculated to confirm the endothermic, spontaneous and physical nature of adsorption process. Langmuir and Freundlich isotherm models were utilized to fit the obtained equilibrium data. Freundlich model was found sufficient to explain the adsorption of blue 221 dye by ZnO NPs and mango peel. The results indicated that the ZnO NPs performed better in blue 221 dye removal as compared with mango peel. The mean size of ZnO NPs was found to be 22.16 nm. The specific surface area of ZnO NPs was obtained 26.85 m2.g-1 and pore volume and pore-size were 0.0581 cm3.g-1 and 1.22 nm, respectively. The maximum adsorption capacity of blue 221 dye on ZnO NPs and mango peel was estimated as 133.33 and 476.19 mg.g-1, respectively.

Graphical Abstract

Hydrothermal synthesis of ZnO nanoparticles and comparison of its adsorption characteristics with the natural adsorbent (mango peel)

Keywords

Main Subjects

[1]. Hosseini M., Nabavi S.M.B., Nabavi S.N., Pour N.A. Environmental Monitoring and Assessment, 2015, 187:1
[2]. Pathania D., Sharma S., Singh P. Arabian Journal of Chemistry, 2017, 10:S1445
[3]. Ajormal F., Moradnia F., Taghavi Fardood S., Ramazani A. Journal of Chemical Reviews, 2020, 2:90
[4]. Lima E.C., Royer B., Vaghetti J.C.P., Simona N.M., da Cunha B.M., Pavan F.A., Benvenutti E.V., Catalu˜na-Veses R., Airoldi C. Journal of hazardous Materials, 2008, 155:536
[5]. Monash P., Pugazhenthi G. Adsorption, 2009, 15::390
[6]. Soleimani-Gorgani A., Taylor J.A. Dyes and Pigments, 2006, 68:109
[7]. Tavares M.G.R., Santos D.H.S., Tavares,M.G., Duarte J.L.S., Meili L., Pimentel W.R.O., Tonholo J., Zanta C.L.P.S. Water, Air, & Soil Pollution, 2020, 231:82
[8]. Ozdemir O., Armagan B., Turan M., Çelik M.S. Dyes and Pigments, 2004, 62:49
[9]. Kant R., Rattan V.K. Carbon letters, 2010, 11:206
[10]. Demirbas E., Nas M.Z. Desalination, 2009, 243:8
[11]. Taghavi Fardood S., Forootan R., Moradnia F., Afshari Z., Ramazani A. Materials Research Express, 2020, 7:015086
[12]. Abd El fatah M., Ossman M.E. International Journal of Environmental Research, 2014, 8:741
[13]. Li Q., Zhao Y., Wang L., Aiqin W. Korean Journal of Chemical Engineering, 2011, 28:1658
[14]. Ismail B., Tajammul S., Akram S. Chemical Engineering Journal, 2013, 219:395
[15]. Sheikhshoaie I., Rezazadeh A., Ramezanpour S. Asian Journal of Nanosciences and Materials, 2018, 1:271
[16]. Chen W., Zhang H., Liang Y., Ding H., Sun S. Frontiers in Chemistry, 2018, 6:1
[17]. Crini G., Lichtfouse E., Wilson L., Morin-crini N., Crini G., Lichtfouse E., Wilson L. Environmental Chemistry for a Sustainable World, 2019,18:23
[18]. Sharma Y.C., Srivastava V., Singh V.K., Kaul S.N., Weng C.H. Environmental Technology, 2009, 30:583
[19]. Ramazani A., Ayubi M., Moradnia F., Abdpour S. Chemical Methodologies, 2019, 3:583
[20]. Moradnia F., Taghavi Fardood S., Ramazani A., Min B., Joo S.W., Varma R.S. Journal of Cleaner Production, 2021, 288:125632
[21]. Saeidian H., Mirjafary Z., Abdolmaleki E., Moradnia F. Synlett, 2013, 24:2127
[22]. Moradnia F., Taghavi Fardood S., Ramazani A., Gupta V.K. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 392:112433
[23]. Fardood S.T., Moradnia F., Mostafaei M., Afshari Z., Faramarzi S.G. Nanochem Res, 2019, 4:86
[24]. Zhong Q., Huang X., Duan J., Liu J., Sun F., He X. Materials Letters, 2008, 62:188
[25]. Thirumavalavan M., Huang K.L., Lee J.F. Materials, 2013, 6:4198
[26]. Communication I.C., Saeidian H., Moradnia F. Quarterly Journal of Iranian Chemical Communication, 2017, 5:252
[27]. Talam S., Karumuri S.R., Gunnam N. ISRN Nanotechnology, 2012, 2012:1
[28]. Baruwati B., Kumar D.K., Manorama S.V. Sensors and Actuators, B: Chemical, 2006, 119:676
[29]. Belviso C., Cavalcante F., Ragone P., Fiore S. Chemosphere, 2010, 78:1172
[30]. Sen Gupta S., Bhattacharyya K.G. Physical Chemistry Chemical Physics, 2012, 14: 6698
[31]. Khattri S.D., Singh M.K. Indian Journal of Chemical Technology, 1999, 6:112
[32]. Dharmendirakumar M.G., Vijayakumar R.T., Vijayakumar G., Tamilarasan R., Dharmendirakumar M. Journal of Materials and Environmental Science, 2015, 3:157
[33]. Rezaei-Aghdam E., Shamel A., Khodadadi-Moghaddam M., Ebrahimzadeh Rajaei G., Mohajeri S. Research on Chemical Intermediates, 2021.
[34]. Zhang C., Wei S., Hu Y., Tang H., Gao J., Yin Z., Guan Q. Journal of Colloid and Interface Science, 2018, 512:55
[35]. Gharbani P., Mehalizadeh A. Asian Journal of Nanoscience and Materials, 2018, 2:27
[36]. Safarkar R., Ebrahimzadeh Rajaei G., Khalili A.S. Asian Journal of Nanoscience and Materials, 2020, 3:157
[37]. Taghavi Fardood S., Moradnia F., Ramazani A. Micro & Nano Letters, 2019, 14:986
[38]. Moradnia F., Fardood S.T., Ramazani A., Osali S., Abdolmaleki I. Micro and Nano Letters, 2020, 15:674
[39]. Li X., Lv K., Deng K., Tang J., Su R., Sun J., Chen L. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 158:40
[40]. Liewhiran C., Seraphin S., Phanichphant S. Current Applied Physics, 2006, 6:499
[41]. Salahuddin N.A., El-Kemary M., Ibrahim E.M. Nanoscience and Nanotechnology, 2015, 5:82
[42]. Salih S.I., Oleiwi J.K., Mohamed A.S. ARPN Journal of Engineering and Applied Sciences, 2018, 13:8889
[43]. Zhang N., Liu S., Jiang L., Luo M., Chi C., Ma J. Journal of Radioanalytical and Nuclear Chemistry, 2014, 303:1671
[44]. Chiu C.W., Wu M.T., Lee J. C.M., Cheng T.Y. Polymers, 2018, 10:1328
[45]. Gürel L. Water Science and Technology, 2017, 75:1889
[46]. Jaseela P.K., Garvasis J., Joseph A. Journal of Molecular Liquids, 2019, 286:583
[47]. Ebrahimzadeh Rajaei G., Khalili A.S., Fataei E., Sajadi N., Kashefi A.M. Comptes Rendus–Chimie, 2020, 23:563
[48]. Ebrahimzadeh Rajaei G., Aghaie H., Zare K., Aghaie M. Journal of Physical and Theoretical Chemistry, 2012, 9:137
[49]. Khalili A.S., Kashefi A.M. Sajjadi N., Fataei E., Ebrahimzadeh Rajaei G. Biological Trace Element Research, 2021, 199:763
[50]. Jawad A.H., Waheeb A.S., Rashid R.A., Nawawi W.I., Yousif E. Desalination and Water Treatment, 2018, 105:322