Document Type : Original Article


Department of Chemistry, Ardabil Branch, Islamic Azad University, Ardabil, Iran


In the present study, Zn–DABCO@Fe3O4 with a high surface area and readily was synthesized. The morphology, particle size distribution, and phase analysis of the Zn–DABCO@Fe3O4 nanopowders were characterized using the scanning electron microscope (SEM), transmission electron microscope (TEM), vibrating sample magnetometer (VSM) and X-ray diffraction (XRD) analysis. The prepared Zn–DABCO@Fe3O4 nanoparticle was utilized as efficient catalyst for selective oxidation of sulfides to sulfoxides using 30% H2O2 as oxidant. The products were achieved with good to excellent yields at room temperature with no over-oxidation of sulfoxides and disulfides to unexpected by-products. This catalyst can be magnetically recovered by applying an external magnet and reused for eight continuous cycles in both oxidation reactions without a notable loss in its catalytic activity. Furthermore, the oxidation of various sulfides was highly chemoselective, but O,O-acetals remained intact under the described reaction conditions.

Graphical Abstract

Chemoselective oxidation of sulfides to sulfoxides using a novel Zn-DABCO functionalized Fe3O4 MNPs as highly effective nanomagnetic catalyst


Main Subjects

[1]. Kaur G., Devi P., Thakur S., Kumar A., Chandel R., Banerjee B. Chemistry Select, 2019, 4:2181
[2]. Gupta S., Lakshman M. J. Med. Chem. Sci., 2019,2:51
[3]. a) Morassaei M.S., Zinatloo-Ajabshir S., Salavati-Niasari M. Advanced Powder Technology, 2017, 28:69; b) Zinatloo-Ajabshir S., Salehi Z., Salavati-Niasar M. Journal of Cleaner Production, 2018, 192:678; c) Heidari-Asil A., Zinatloo-Ajabshir S., Amiri O., Salavati-Niasari M. International Journal of Hydrogen Energy, 2020, 45:22761; d) Zinatloo-Ajabshir S., Morassaei M.S., Amiri O., Salavati-Niasari M., Kok Foong L. Ceramics International, 2020, 46:17186
[4]. Lopez-Tejedor D., Benavente R., Palomo J.M. Catal. Sci. Technol., 2018, 8:1754
[5]. Shylesh S., Schuenemann V., Thiel R. Angew. Chem. Int. Ed., 2010, 49:3428
[6]. Chen M.N., Mo L.P., Cui Z.S., Zhang Z.H. Curr. Opin. Green Sustain. Chem., 2019, 15:27
[7]. Amiri M., Eskandari Kh., Salavati-Niasari M. Adv. Colloid Interface Sci., 2019, 271:101982
[8]. Kassaee M.Z., Masrouri H., Movahedi F. Applied Catalysis A: General, 2011, 395:28
[9]. Kiasat A.R., Nazari S. Journal of Molecular Catalysis A: Chemical, 2012, 365:80
[10]. Taber A., Kirn J.B., Jung J.Y., Ahn W.S., Jin M.J. Synlett, 2009, 15:2477
[11]. Jiang Y.Y., Guo C., Xia H.S., Mahmood I., Liu C.Z., Liu H.Z. J. Mol. Catal. B: Enzym, 2009, 58:103
[12]. Zhang Y., Xia C. Appl. Catal. A: General, 2009, 366:141
[13]. Abu-Reziq R., Wang D., Post M., Alper H. Adv. Synth. Catal, 2007, 349:2145
[14]. Kooti M., Afshari M. Mater. Res. Bull., 2012, 47:3473
[15]. Zheng X., Luo S.Z., Zhang L., Cheng J.P. Green Chem, 2009, 11:455
[16]. Zhang Q., Su H., Luo J., Wei Y.Y. Green Chem, 2012, 14:201
[17]. Zinatloo-Ajabshir S., Baladi M., Amiri O., Salavati-Niasari M. Separation and Purification Technology, 2020, 248, 117062
[18]. Zinatloo-Ajabshir S., Ghasemian N., Mousavi-Kamazani M., Salavati-Niasari M. Ultrasonics Sonochemistry, 2021, 71:105376
[19]. a) Zinatloo-Ajabshir S., Mousavi-Kamazani M. Ceramics International, 2020, 46:26548; b) Ghodrati M., Mousavi-Kamazani M., Zinatloo-Ajabshir S. Ceramics International, 2020, 46:28894
[20]. Pankhurst Q.A., Connolly J., Jones S.K., Dobson J. J. Phys. D. Appl. Phys, 2003, 36:167
[21]. a) Gupta A.K., Curtis A.S.G. J. Mater. Sci. Mater. Med., 2004, 15:493; b) Neuberger T., Schoepf B., Hofmann H., Hofmann M. J. Magn. Magn. Mater., 2005, 293:483
[22]. Gupta A.K., Gupta M. Biomaterials, 2005, 26:3995
[23]. Chikazumi S., Taketomi S., Ukita M., Mizukami M., Miyajima H., Setogawa M., Kurihara Y. J. Magn. Magn. Mater., 1987, 65:245
[24]. Hajjami M., Ghorbani F., Rahimipanah S., Roshani S. Chin. J. Catal., 2015, 36:1852
[25]. Nikoorazm M., Ghorbani F., Ghorbani-Choghamarani A., Erfani Z. J. Iran. Chem. Soc., 2019, 16:553
[26]. Hosseinpoor F., Golchoubian H. Tetrahedron Lett, 2006, 47:5195
[27]. Lakouraj M.M., Tajbakhsh M., Tashakkorian H. Monatsh Chem, 2007, 138:83
[28]. Aiping G., Mei W.G., Dongping W., Lu Z., Haibin L., Wei T., Licheng S. Chin J Catal, 2006, 27:743
[29]. Surendra K., Krishnaveni N.S., Kumar V.P., Sridhar R., Rao K.R. Tetrahedron Lett, 2005, 46:4581
[30]. Karimi B., Ghoreishi-Nezhad M., Clark J.H. Org Lett, 2005, 7:625
[31]. Haddadi H., Moradpour Hafshejani Sh., Riahi Farsani M. Catal Lett, 2015, 145:1984
[32]. Mirzaie, A. J. Med. Chem. Sci., 2018, 1:5
[33]. Karimi B., Khorasani M. ACS Catal, 2013, 3:1657
[34]. Ghorbani-Choghamarani A., Ghasemi B., Safari Z., Azadi G. Catal Commun, 2015, 60:70
[35]. Dai W., Li G., Wang L., Chen B., Shang S., Lv Y., Gao S. RSC Adv,2014, 4:46545
[36]. Hadikhani S., Rekavandi M., Hosseinikhah S.M., Hajinasiri R., Rezayati S. Iran J Sci Technol Trans Sci, 2018, 42:1233
[37]. Bayat A., Shakourian-Fard M., Hashemi M.M. Catal Commun, 2014, 52:16
[38]. Zhou X.T., Ji, H.B. Catal Commun, 2014, 53:29
[39]. Nasseri M.A., Sadeghzadeh S.M. Journal of the Iranian Chemical Society, 2014, 11:27