Document Type : Original Article


1 Department of Nanotechnology, Graduate University of Advanced Technology, Kerman, P.O.Box 76315-117 , Iran

2 Semiconductors Group, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, P.O.Box 76315-117 , Iran

3 Department of Environment, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, P.O.Box 76315-117 , Iran


Single-walled carbon nanotubes (SWCNTs) have been widely utilized in many types of applications, cinfirming their excellent role as carriers of drugs with a highly site-selective delivery capability. As nanotubes can release drugs into the tissue cells without damaging the healthy cells, it is necessary to determine the structural properties of drugs–SWCNTs complexes which may lead to the development of optimal SWCNTs as new effective drug transporters. In this work, a theoretical study of structural properties and reactivity of clopidogrel drug with C (5, 5) carbon nanotubes is presented. Computational and chemical simulations were carried out for clopidogrel, SWCNT and clopidogrel-SWCNT by B3LYP/6-31+G with the Gaussian 09 program and then energies of all optimized configurations were evaluated by the M06-2X density functional method. The highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), natural bond orbital (NBO), global reactivity descriptors and density of states (DOS) of clopidogrel and SWCNT were calculated. The results show that there is a relationship between the energy gap and the DOS. The nature of interaction and bonding between the clopidogrel and SWCNT is physisorption as the adsorption energy and charge transfer is small, and adsorption distance is large. Generally, the results of our simulation studies demonstrated that, the carbon nanotubes have a high potential to be considered as carriers of clopidogrel in drug delivery systems. Band gaps of clopidogrel-SWCNT complex, which were computed by B3LYP method, are 1.777 and 1.860 eV in gas and the solution phases, respectively. Also, the dipole moment of clopidogrel-SWCNT complex in solution phase is 5.286 Debye, which is higher than the gas phase (3.234 Debye). These results show the effect of the solvent on the complex.

Graphical Abstract

Analysis of structural, and electronic properties of clopidogrel drug adsorption on armchair (5, 5) Single-walled carbon nanotube


Main Subjects

[1]. Bondavalli P. Graphene and Related Nanomaterials: Properties and Applications; Hardcover, Elsevier., 2017
[2]. Iijima S., Ichihashi T., Nature, 1993, 363:603
[3]. Ijima S., Nature., 1991, 354:56
[4]. Dai H. Accounts Of Chemical Research, 2002, 35:1035
[5]. Gooding J.J. Electrochimica Acta, 2005, 50:3049
[6]. Ganzhorn M., Vijayaraghavan A., Green A.A., Dehm S., Voigt A., Rapp M., Hersam M.C., Krupke R. Advanced Materials, 2011, 23:1734
[7]. Zhou W., Rutherglen C., Burke P.J. Nano Research, 2008, 1:158
[8]. Kong J., Franklin N.R., Zhou C., Chapline M.G., Peng S., Cho K., Dai H. Science, 2000, 287:622
[9]. Viswanathan S., Radecka H., Radecki J. Biosensors and Bioelectronics, 2009, 24:2772
[10]. Grieshaber D., MacKenzie R., Voeroes J., Reimhult E. Sensors, 2008, 8:1400
[11]. Kam N.W.S., Liu Z., Dai H. Journal of the American Chemical Society, 2005, 127:12492
[12]. Chen R., Zhan Y., Wang D., Dai H. J. Am. Chim. Soc., 2001, 123:3838
[13]. Liu Z., Sun X., Nakayama-Ratchford N., Dai H. ACS nano, 2007, 1:50
[14]. Bianco A., Kostarelos K., Prato M. Current opinion in chemical biology., 2005, 9:674
[15]. Tran S., DeGiovanni P.J., Piel B., Rai P. Clinical and translational medicine, 2017, 6:44
[16]. Prato M., Kostarelos K., Bianco A. Accounts of chemical research, 2007, 41:60
[17]. Debbage P. Current pharmaceutical design, 2009, 15:153
[18]. Xu S., Pelisek J., Jin Z.G. Trends in Endocrinology & Metabolism, 2018, 29:739
[19]. Herrero-Fernandez B., Gomez-Bris R., Somovilla-Crespo B., Gonzalez-Granado J.M., International Journal of Molecular Sciences, 2019, 20:5293
[20]. Maltz L.A., Gauvreau K., Connor J.A., Jenkins K.J. Pediatric Cardiology, 2009, 30:99
[21]. Xu H., Li L., Fan G., Chu X. Computational and Theoretical Chemistry, 2018, 1131:57
[22]. Hesabi M., Behjatmanesh-Ardakani R. Applied Surface Science., 2018, 427:112
[23]. Li W., Li G.Q., Lu X.M., Ma J.J., Zeng P.Y., He Q.Y., Wang, Y.Z. Chemical Physics Letters., 2016, 658:162
[24]. Daneshmehr S. Procedia Materials Science, 2015, 11:131
[25]. Hafizi H., Chermahini A.N., Mohammadnezhad G., Teimouri A. Applied Surface Science, 2015, 329:87
[26]. Saikia N., Deka R.C. Computational and Theoretical Chemistry, 2011, 964:257
[27]. Hamedani S., Aghaie H., Moradi S. Journal of Physical & Theoretical Chemistry, 2014, 11:21
[28]. Petersson G.A., Bennett A., Tensfeldt T.G., Al‐Laham M.A., Shirley W.A., Mantzaris J. The Journal of Chemical Physics., 1988, 89:2193
[29]. Frisch M., Trucks G., Schlegel H., Scuseria G., Robb M., Cheeseman J., Scalmani G., Barone V., Mennucci B., Petersson G., Gaussian 09, revision A. 02, Gaussian, Inc., Wallingford, CT, 2009.
[30]. Zhao Y., Truhlar D.G. Theoretical Chemistry Accounts, 2008, 120:215
[31]. Hohenberg P., Kohn W., Physical Review, 1964, 136:B864
[32]. Chermette H. Coordination Chemistry Reviews, 1998, 178:699
[33]. Nagy Á. Physics Reports, 1998, 298:1
[34]. Higuchi K., Higuchi M. Journal of Magnetism and Magnetic Materials, 2004, 272:659
[35]. Becke A.D. Physical Review A., 1988, 38:3098
[36]. Becke A.D. The Journal of Chemical Physics., 1993, 98:5648
[37]. López N., Illas F. The Journal of Physical Chemistry B., 1998, 102:1430
[38]. Ignaczak A., Gomes J.N. Chemical Physics Letters, 1996, 257:609
[39]. Perdew J.P. International Journal of Quantum Chemistry, 1985, 28:497
[40]. Burns L.A., Mayagoitia Á.V, Sumpter B.G., Sherrill C.D. The Journal of Chemical Physics., 2011, 134:084107
[41]. Lu X., Tian F., Xu X., Wang N., Zhang Q. Journal of the American Chemical Society, 2003, 125:10459
[42]. Alavi H., Ghiasi R., Ghazanfari D., Akhgar M. R. Revue Roumaine de Chimie., 2014, 59:883
[43]. Ghiasi R., Sadeghi N. Journal of Theoretical and Computational Chemistry, 2017, 16:1750007
[44]. Kazemi Z., Ghiasi R., Jamehbozorgi S. Journal of Nanoanalysis., 2019, 6:121
[45]. Cances E., Mennucci B.E., Tomasi J. The Journal of Chemical Physics, 1997, 107:3032
[46]. Chipman D.M. The Journal of Chemical Physics, 2000, 112:5558
[47]. Tomasi J., Mennucci B., Cances E. Journal of Molecular Structure, 1999, 464:211
[48]. Chattaraj P.K., Sarkar U., Roy D.R. Chemical Reviews, 2006, 106:2065
[49]. Hazarika K.K., Baruah N.C., Deka R.C. Structural Chemistry, 2009, 20:1079
[50]. Parr R.G., Szentpály L.V., Liu S. Journal of the American Chemical Society, 1999, 121:192
[51]. Ghiasi R., Aghazadeh Kozeh Kanani F. Asian Journal of Nanosciences and Materials, 2018, 1:234
[52]. Ghiasi R., Bharifar H., Hosseinzade S., Zarinfard M.A., Hakimyoun A.H. Journal of Applied Chemical Research, 2014, 8:29
[53]. Ghiasi R., Hadi F., Hakimyuon A.H. Journal of Applied Chemical Research, 2014, 8:55
[54]. Ghiasi R., Pasdar H., Ghaffarpour Z., Fullerenes, Nanotubes and Carbon Nanostructures, 2013, 21:644
[55]. Lu T., Chen F. Journal of Computational Chemistry, 2012, 33:580
[56]. Reed A.E., Weinstock R.B., Weinhold F. The Journal of Chemical Physics, 1985, 83:735
[57]. Reed A.E., Weinhold F. The Journal of Chemical Physics, 1985, 83:1736
[58]. Simons M., Topper A., Sutherland B., Seybold P.G., Annual Reports in Computational Chemistry, 2011, 7:237
[59]. Saikia N., Deka R.C. Chemical Physics Letters, 2010, 500:65
[60]. Padmanabhan J., Parthasarathi R., Subramanian V., Chattaraj P. The Journal of Physical Chemistry A, 2007, 111:1358
[61]. Saha S., Dinadayalane T.C., Leszczynska D., Leszczynski J. Chemical Physics Letters, 2013, 565:69
[62]. Oftadeh M., Gholamian M., Abdallah H.H. Physical Chemistry Research, 2014, 2:30