Document Type: Original Article

Authors

1 Department of Physics, European University of Bangladesh, Dhaka-1216, Bangladesh

2 Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong,Hathazari-4334, Bangladesh

3 Department of Chemistry, European University of Bangladesh, Dhaka-1216, Bangladesh

Abstract

Incomputational chemistry through various basis sets, it is possible to design new molecules and discuss their use through their physical, chemical, biochemical studies. Chemical activity, biological activity, physical chemical activities can be diagnosed using density functional theory (DFT) for some palladium (II) complex ions. In this research study, the optimized dihydrazine palladium (II) complex ion (L01), di(1, 2- diaminemethane) palladium (II) complex ion (L02), di(1, 2- diamineethane) palladium (II) complex ion (L03), and di (1, 2- diamine propane) palladium (II) complex ion (L04) were simulated. Finally a comparative study of the palladium (II) complex ions were designed to show what ions are biologically more active using their QSAR data and orbital diagrams for HOMO and LUMO of the study of electronic properties. The HOMO-LUMO gap was also evaluated for chemical reactivity. The PIC50 value was calculated using the QSAR data where the value ​​of L01, L02, and L03 L04 where -15.757, 13.128, -6.111 and -5.955, respectively. If PIC50 is below -6, then the compound is said to be biologically active. It was found that, the L04 is highly biological active and L03 is almost similar to L04. Also, by enhancing the methyl group in palladium chain, the biological activity increased.

Graphical Abstract

Keywords

[1].  Chen X., Engle K.M., Wang D.H., Yu J.Q. Angewandte Chemie International Edition, 2009, 48:5094

[2]. Lazarević T.R., Bugarčić A., Živadin D. European journal of medicinal chemistry, 2017,  142:8

[3].  Ray S.M., Singh R., Jay K., Samantaray Manoja K., Shaikh Mobin M., Panda D., Ghosh P. Journal of the American Chemical Society, 2007, 129:15042

[4].  Ajoy Kumer M.N.S., Sunanda PAUL, International Journal of Chemistry and Technology, 2019, 3:26

[5]. Ajoy Kumer M.N.S., Paul S., Zannat A. Advanced Journal of Chemistry-Section A, 2019, 2:190

[6].  Islam M.J., Sarker Md.N., Kumer A., Paul S. International journal of Advanced Biological and Biomedical Research, 2019, 7:318

[7].  Islam M.J., Kumer A., Sarker Md. N., Paul S., Zannat A. Advanced Journal of Chemistry-Section A, 2019, 2:316

[8].  Ajoy K.,  Paul S., Sarker Md.N., Islam M.J. International Journal of New Chemistry, 2019, 6:236

[9].  Ajoy K., Sarker Md.N., Pual S. Eurasian Journal of Environmental Research, 2019, 3:1

[10]. Islam M.J., Sarker Md.N., Kumer A., Paul S., International journal of Advanced Biological and Biomedical Research, 2019, 7:306

[11]. Kumer A., Ahmed B., Sharif Md.A., Al-Mamun A. Asian Journal of Physical and Chemical Science, 2017, 4:1

[12].  Sarker Md.N., Ajoy K., Islam M.J., Sunanda P. Asian Journal of Nanoscience and Materials, 2019, 2:439

[13]. Miyaura N., Suzuki A. Chemical eviews, 1995, 95:2457

[14]. Miyaura N., Yanagi T., Suzuki A. Synthetic Communications, 1981, 11:513

[15]. Hossain M.I., Ajoy K. Asian Journal of Chemical Science, 2018, 3:1

[16].  Kumer A., Ahmed B., Sharif M.A., Al-Mamun A. Asian Journal of Physical and Chemical Science, 2017, 4:1

[17].  Garrett C.E., Prasad K. Advanced Synthesis & Catalysis, 2004, 346:889

[18].  Doucet H., Hierso J.C. Currentopinion in drug discovery & development, 2007, 10:672 [19]. Ajoy K., Sunanda P., Sarker N.Md., Islam J.M. International Journal of New Chemistry, 2019, 6:236

[20].  Howard A., McIver J., Collins J. Hyperchem computational chemistry. Hypercube Inc., Waterloo 1994

[21]. Koopmans Y.T. Physica, 1934, 1:104

[22].  Parr R.G., Szentpály L.V., Liu S. Journal of the American Chemical Society, 1999, 121:1922

[23]. Canadell S., Pouget J.P., Brossard L. Solid State Communications, 1990, 75:633

[24].  Zineb Almi S.B., Lanez T., Tchouar N. International Letters of Chemistry, Physics and Astronomy, 2014, 37:113