Document Type : Original Article


Department of Applied Chemistry, Faculty of Science, Malayer University, Malayer, 65174, Iran


In this research, the interaction of the acrolein (Acr) molecule with the pristine and Ga‒doped boron phosphide nanotube (BPNTs) was investigated using the density functional theory (DFT). The electrical, quantum, thermodynamic properties, natural bond orbital (NBO), reduced density gradient (RDG), atom in molecule (AIM), and molecular electrostatic potential (MEP) for all studied models were calculated and analyzed. The results revealed that the thermodynamic parameters (∆H and ∆G) values for all studied models were negative and favorable in thermodynamic point of view. By doping the Ga atom and adsorbing Acr molecule, the HOMO, LUMO, gap energy, conductivity, and optical properties of the nanotube altered slightly from the original values. Whereas, the global hardness and chemical potential of the Ga-doped increased slightly from pristine state and the activity of system decreased slightly from the original state. In addition, the AIM parameters and RDG results showed that the covalent bonding interaction between Acr and BPNTs was so strong.

Graphical Abstract

A DFT, NBO, RDG, MEP and thermodynamic sudy of acrolein interaction with pristine and Ga‒doped boron phosphide nanotube


Main Subjects

[1]. Seaman V.Y., Bennett D.H., Cahill T.M. Environ. Sci. Technol., 2007, 41:6940

[2]. Woodruff T.J., Wells E.M., Holt E.W., Burgin D.E., Axelrad D.A. Env. Health Perspect, 2007, 115:410

[3]. Niosh Pocket Guide to Chemical Hazards, Department of Health and Human Services Centers for Disease Control and Prevention National Institute for Occupational Safety and Health, 2007

[4]. Benz L., Haubrich J., Quiller R.G., Friend C.M. Surface Sci., 2009, 603:1010

[5]. Abraham K.,  Andres S., Palavinskas R., Berg K., Appel K.E.,  Lampen A. Mol. Nutr. Food Res., 2011, 55:1277

[6]. Feng Z., Hu W., Hu Y., Tang M. Proc. National Academy. Sci., 2006, 103:15404

[7]. Gomes R.,  Meek M.E.,  Eggleton M. Concise International Chemical Assessment Document, World Health Organization, Geneva, 2002, 924153043X

[8]. Grafstrom R.C., Dypbukt J.M., Willey J.C., Sundqvist K., Edman C., Atzori L., Harris C.C. Cancer Res., 1988, 48:1717

[9]. Iijima S. Nature,1991, 354:56

[10]. Mirzaei M., Giahi M. Physica E., 2010, 42:1667

[11]. Rezaei‒Sameti M. Physica B., 2012, 407:22

[12]. Baei M.T., Moghimi M., Torabi Varasteh Moradi A. Comput. Theor. Chem., 2011, 972:14

[13]. Anurag S., Maya S., Neha T. J. Comp. Theo. Nanosci., 2012, 9:1693

[14]. Rezaei‒Sameti M. Phys. B., 2012, 407:3717

[15]. Rezaei Sameti M., Amirian B. Asian J. Nanosci. Mat., 2018, 1:262

[16]. Rezaei‒Sameti M. Quantum Matt.,2013, 2:396

[17]. Baei M.T. Monat. Chem. Mon., 2012, 143:881

[18]. Baei M.T., Ahmadi Peyghan A., Moghimi M. Monat. Chem. Mon., 2012, 143:1627

[19]. Mirzaei M., Meshkinfam M. Solid. State. Sci., 2011, 13:1926

[20]. Rezaei‒Sameti M. Arabian J. Chem., 2015, 8:168

[21]. Esrafili M.D. J. Fullerenes, Nanotubes.Carbon Nanostr., 2015, 23:142

[22]. Ahmadi Peyghan A., Baei M.T., Moghimi M., Hashemian S.  J. Clust. Sci., 2013, 24:49

[23]. Beheshtian J., Baei M.T. Surface Sci., 2012, 606:981

[24]. Baei M.T., Varasteh Moradi A., Torabi P., Moghimi M. Monatsh. Für. Chem. Chem. Monthly., 2012, 143:37

[25]. Baei M.T., Varasteh Moradi A., Moghimi M., Torabi P. Comp. Theo. Chem., 2011, 967:179

[26]. Kanania Y., Baei M. T., Varasteh Moradia A., Soltanic A. Physica E., 2014,  59:66

[27]. Zahra Sayyad‒Alangi S., Baei  M.T., Hashemian S. J. Sulfur Chem., 2013, 34:407

[28]. Zahra Sayyad‒Alangi S., Hashemian S., Baei M. T. J. Phosphorus, Sulfur, Silicon Related Elements., 2014, 189:453

[29]. Soltani A., Ramezani Taghartapeh M., Mighani H., Pahlevani A.A., Mashkoor R. App. Surface Sci., 2012, 259:637

[30]. Soleymanabadi H., Kamfiroozi M., Ahmadi A. J. Mol. Model., 2012, 18:2343

[31]. Rezaei‒Sameti M., Saki F. Phys. Chem. Res., 2015, 3:265

[32]. Rezaei‒Sameti M., Dadfar E. A. Iranian J. hys. Res., 2015, 15:41

[33]. Rezaei‒Sameti M., Yaghoobi S. Comp. Condens Mat., 2015, 3:21

[34]. Bader R.F.W. Acc. Chem. Res., 1985, 18:9

[35]. Biegler‐König F., Schönbohm J. J. Computational Chem., 2002, 23:1489

[36]. Shahabi M., Raissi H. J. Incl. Phenom. MAcrocyc. Chem., 2016, 84:99

[37]. Johnson  E. R., Keinan S., Mori‒Sanchez P. J. Am. Chem. Soc., 2010, 132:6498

[38]. Runge E., Gross  E. K. U. Phy. Rev. Lett., 1984, 52:997