Document Type : Original Article


1 Rural Development Society, R&D centre, Punjagutta, Hyderabad, India, 500082

2 Department of Chemistry, College of Natural and Computational Science, Wollega University, Nekemte-P.O. Box: 395, Ethiopia

3 Department of Chemistry, Changwon National University, Changwon 641-773, Republic of Korea


Iron nanoparticles (NPs), due to their interesting properties, low cost preparation and many potential applications in ferrofluids, magneto-optical, catalysis, drug delivery systems, magnetic resonance imaging, and biology, have attracted a lot of interest during recent years. In this research, γFe2O3NPs were synthesized through simple co-precipitation method followed by thermal treatment at 300 °C for 2 hours. In our synthesis route, FeCl3 and FeCl2 were employed as precursors to synthesize γ-Fe2O3NPs. This approach is very effective and economical. The γ-Fe2O3NPs were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM),and vibrating sample magnetometer (VSM). The XRD and FT-IR results indicated the formation of γ-Fe2O3NPs. The SEM and TEM images contributed to the analysis of particle size and revealed that the γ-Fe2O3 particle size of the nanopowders ranged from 11 and 13 nm. Magnetic property was measured by VSM at room temperature and hysteresis loops exhibited that the γ-Fe2O3 NPs were super-paramagnetic. The synthesized γ-Fe2O3NPs were applied in order to synthesize mono-triazoles within one molecule using azide-alkyne cycloaddition reactions. KEYWORDS: γ-Fe2O3 Nanoparticles,

Graphical Abstract

Synthesis of γ-Fe2O3 Nanoparticles and Catalytic activity of Azide-Alkyne Cycloaddition Reactions


Main Subjects

[1]. Cornell R.M., Schwertmann U. The Iron Oxides : Structure, Properties, Reaction, Occurrences and Uses; WILEY-VCH Verlag ‎ GmbH Co. John Wiley & Sons,‎ 2003 [Google Scholar], [Publisher]
[2]. Yu S., Chow G.M. Mater. Chem., 2004, 14:2781 [Crossref], [Google Scholar], [Publisher]
[3]. Tuutijärvi T., Lu J., Sillanpää M.‎ Chen, G. Hazard. Mater., 2009, 166:1415 [Crossref], [Google Scholar], [Publisher]
[4]. Cui H., Liu Y., Kusumoto R.W., Y., Abdulla-Al-Mamun, Powder Technol., 2013, 24:93 [Crossref], [Google Scholar], [Publisher]
[5]. Miguel O.B., Morales M.P., ‎Serna C.J., Veintemillas-‎ Verdaguer S. IEEE Trans. Magn., 2002, 38:2616 [Crossref], [Google Scholar], [Publisher]
[6]. Taeghwan Hyeon, Su Seong Lee, ‎ Jongnam Park, Y.C., Na, H.B. Am. Chem. Soc., ‎2001, 123:12789 [Crossref], [Google Scholar], [Publisher]
[7]. Asuha S., Zhao S., Wu H.Y., Song L., Tegus, O. Alloys Compd., 472:L23 [Crossref], [Google Scholar], [Publisher]
[8]. Islam M.S., Kurawaki J.M., Mukhlish, Bin M. Z. Sci. Res., 2011, 4:99
[9]. Salazar-Alvarez G., Muhammed M., Zagorodni A.A. Eng. Sci., 2006, 61:4625 [Crossref], [Google Scholar], [Publisher]
[10]. Randrianantoandro N., Mercier A.M., Hervieu M., Grenèche J.M. Lett., 2001, 47:150 [Crossref], [Google Scholar], [Publisher]
[11]. Strobel R., Pratsinis S.E. Powder Technol., 2009, 20:190 [Crossref], [Google Scholar], [Publisher]
[12]. Shafi K.V.P.M., Ulman A., Dyal , Yan X., Yang N.L., Estournès C., Fournès L., Wattiaux A., White H., Rafailovich M. Chem. Mater., 2002, 14:1778 [Crossref], [Google Scholar], [Publisher]
[13]. Liu T., Guo L., Tao Y., Wang Y.B., Wang W. D. Nanostructured Mater., 1999, 11:487 [Crossref], [Google Scholar], [Publisher]
[14]. Cao S.W., Zhu Y.J., Zeng Y.P. Magn. Magn. Mater., 2009, 321:3057 [Crossref], [Google Scholar], [Publisher]
[15]. Iwasaki, T., Kosaka, K., Watano, S., Yanagida, T., Kawai, T. Res. Bull., 2010, 45:481 [Crossref], [Google Scholar] [Publisher]
[16]. Bacri, J.C., Perzynski, R., Salin, D., Cabuil, V., Massart, R. Magn. Magn. Mater., 1986, 62: 36 [Crossref], [Google Scholar], [Publisher]
[17]. Kumar A.P., Kumar B.P., Kumar A.B.V.K., Huy, B.T., Lee Y.I. Surf. Sci., 2013, 265:500 [Crossref], [Google Scholar], [Publisher]
[18]. Kumar A.P., Baek M., Sridhar C., Kumar B. P., Lee Y. Korean Chem. Soc., 2014, 35: 1144 [Google Scholar]
[19]. Johansson J.R., Beke-Somfai, T., Stålsmeden, A.S., Kann, N. Rev. 2016, 23:14726 [Crossref], [Google Scholar], [Publisher]
[20]. da Silva F.D.C., de Souza M.C.B., Frugulhetti I.I.P., Castro H.C., Souza S.L.D.O., Moreno T., Souza L. De, Rodrigues D.Q., Souza A. M.T., Abreu P.A., Passamani F., Rodrigues C.R., Ferreira V.F. J. Med. Chem., 2009, 44:373 [Crossref], [Google Scholar], [Publisher]
[21]. Genin M.J., Allwine D., Anderson D.J., Barbachyn M.R., Emmert D.E., Garmon S., Graber D.R., Grega K.C., Hester J.B., Hutchinson D.K., Morris J., Reischer R.J., Ford C.W., Zurenko, G.E., Hamel J.C., Schaadt R.D., Stapert D., Yagi B.H. Med. Chem., 2000, 43:953 [Google Scholar]
[22]. Buckle D.R., Rockell C.J., Smith H., Spicer B.A. Med. Chem., 1984, 27:223 [Crossref], [Google Scholar], [Publisher]
[23]. Alexacou K.M., Hayes J.M., Tiraidis C., Zographos S.E., Leonidas D.D., Chrysina E.D., Archontis G., Oikonomakos N.G., Paul J.V, Varghese B., Loganathan D. Proteins, 2008, 71:1307 [Crossref], [Google Scholar], [Publisher]
[24]. Brockunier L.L., Parmee E.R., Ok H.O., Candelore M.R., Cascieri M.A., Colwell L.F., Deng, L., Feeney W.P., Forrest M.J., Hom G.J., MacIntyre D.E., Tota L., Wyvratt M.J., Fisher M.H., Weber A. E. Bioorganic Med. Chem. Lett., 2000, 10:2111 [Crossref], [Google Scholar], [Publisher]
[25]. Fan W., Comprehensive Heterocyclic Chem. II, vol. 4, Pergamon, Oxford: UK, 1996
[26]. Rostovtsev V.V., Green L.G., Fokin V.V., Sharpless K.B. Chem. Int. Ed., 2002, 41:2596 [Crossref], [Google Scholar], [Publisher]
[27]. Tornøe C. W., Christensen C., Meldal M. Org. Chem., 2002, 67:3057 [Crossref], [Google Scholar], [Publisher]
[28]. Gian Cesare Tron, Tracey Pirali, Richard A. Billington, P.L.C., Giovanni Sorba A.A.G. Res. Rev., 2012, 29:1292
[29]. Steenackers H., Ermolat’ev D., Trang T.T.T., Savalia B., Sharma U.K., De Weerdt A., Shah A., Vanderleyden J., Van der Eycken E.V. Biomol. Chem., 2014, 12:3671 [Crossref], [Google Scholar], [Publisher]
[30]. Kovács ‎, ‎Zih-Perényi ‎K., ‎Révész Á., Novák Z. Synth., 2012, 44:3722 ‎[Crossref], [Google Scholar], [Publisher]
[31]. Wang D., Salmon L., Ruiz J., Astruc D. Commun., 2013, 49:6956 ‎[Crossref], [Google Scholar], [Publisher]
[32]. Kale S.R., Kahandal S.S., Gawande M.B., Jayaram R.V. RSC Adv., 2013, 3:8184‎ [Crossref], [Google Scholar], [Publisher]
[33]. Grigorie A.C., Muntean C., Stefanescu M. Acta, 2015, 621:61 [Crossref], [Google Scholar], [Publisher]
‎‎[34]. Stoia M., Istratie R., Păcurariu C. J. Therm. Anal. Calorim., 2016, 125:1185 [Crossref], [Google Scholar], [Publisher]