Document Type: Original Article

Authors

1 Department of Chemistry, College of Natural and Computational Science, Wollega University, Nekemte-P.O. Box: 395, Ethiopia.

2 Department of Chemistry, Changwon National University, Changwon 641-773, Republic of Korea.

3 Rural Development Society, R&D centre, Punjagutta, Hyderabad, India, 500082.

Abstract

Iron nanoparticles (NPs), due to their interesting properties, low cost preparation and many potential applications in ferrofluids, magneto-optical, catalysis, drug delivery systems, magnetic resonance imaging, and biology, have attracted a lot of interest during recent years. In this research, γFe2O3NPs were synthesized through simple co-precipitation method followed by thermal treatment at 300 °C for 2 hours. In our synthesis route, FeCl3 and FeCl2 were employed as precursors to synthesize γ-Fe2O3NPs. This approach is very effective and economical. The γ-Fe2O3NPs were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM),and vibrating sample magnetometer (VSM). The XRD and FT-IR results indicated the formation of γ-Fe2O3NPs. The SEM and TEM images contributed to the analysis of particle size and revealed that the γ-Fe2O3 particle size of the nanopowders ranged from 11 and 13 nm. Magnetic property was measured by VSM at room temperature and hysteresis loops exhibited that the γ-Fe2O3 NPs were super-paramagnetic. The synthesized γ-Fe2O3NPs were applied in order to synthesize mono-triazoles within one molecule using azide-alkyne cycloaddition reactions. KEYWORDS: γ-Fe2O3 Nanoparticles,

Graphical Abstract

Keywords

Main Subjects

  1. Cornell, R. M., & Schwertmann, U. (2003) The Iron Oxides : Structure, Properties, Reaction, Occurrences and Uses. WILEY-VCH Verlag GmbH Co. John Wiley & Sons.
  2. Yu, S., & Chow, G. M. 2004. J. Mater. Chem., 14: 2781–2786.
  3. Tuutijärvi, T., Lu, J., Sillanpää, M., & Chen, G. (2009) J. Hazard. Mater., 166: 1415–1420.
  4. Cui, H., Liu, Y., & Ren, W. (2013). Adv. Powder Technol., 24: 93–97.
  5. Miguel, O. B., Morales, M. P., Serna, C. J., & Veintemillas-Verdaguer, S. (2002) IEEE Trans. Magn., 38: 2616–2618.
  6. taeghwan Hyeon, Su Seong Lee, Jongnam Park, Y. C. and H. B. N. (2001) J. Ameriacan Chem. Soc., 123: 12789–12801.
  7. Asuha, S., Zhao, S., Wu, H. Y., Song, L., & Tegus, O. (2009) J. Alloys Compd., 472: L23–L25.
  8. Islam, M. S., Kurawaki, J., Kusumoto, Y., Abdulla-Al-Mamun, M., & Mukhlish, M. Z. Bin. 2011. J. Sci. Res., 4: 99.
  9. Salazar-Alvarez, G., Muhammed, M., & Zagorodni, A. A. (2006) Chem. Eng. Sci., 61: 4625–4633.
  10. Randrianantoandro, N., Mercier, A. M., Hervieu, M., & Grenèche, J. M. (2001) Mater. Lett., 47: 150–158.
  11. Strobel, R., & Pratsinis, S. E. (2009) Adv. Powder Technol., 20: 190–194.
  12. Shafi, K. V. P. M., Ulman, A., Dyal, A., Yan, X., Yang, N. L., Estournès, C., Fournès, L., Wattiaux, A., White, H., & Rafailovich, M.(2002) Chem. Mater., 14: 1778–1787.
  13. Liu, T., Guo, L., Tao, Y., Wang, Y. B., & Wang, W. D.(1999) Nanostructured Mater., 11: 487–492.
  14. Cao, S.-W., Zhu, Y.-J., & Zeng, Y.-P. (2009) J. Magn. Magn. Mater., 321: 3057–3060.
  15. Iwasaki, T., Kosaka, K., Watano, S., Yanagida, T., & Kawai, T. (2010) Mater. Res. Bull., 45: 481–485.
  16. Bacri, J. C., Perzynski, R., Salin, D., Cabuil, V., & Massart, R. (1986) J. Magn. Magn. Mater., 62: 36–46.
  17. Kumar, A. P., Kumar, B. P., Kumar, A. B. V. K., Huy, B. T., & Lee, Y. I. (2013) Appl. Surf. Sci., 265: 500–509.
  18. Kumar, A. P., Baek, M., Sridhar, C., Kumar, B. P., & Lee, Y. (2014) Bull. Korean Chem. Soc., 35: 1144–1148.
  19. Kumar, A. P., Baek, M., Sridhar, C., Kumar, B. P., & Lee, Y. (2014) Bull. Korean Chem. Soc., 35: 1144–1148.
  20. C, F. De, Cecilia, M., Souza, B. V. De, Frugulhetti, I. I. P., Castro, H. C., Souza, S. L. D. O., Moreno, T., Souza, L. De, Rodrigues, D. Q., Souza, A. M. T., Abreu, P. A., Passamani, F., Rodrigues, C. R., & Ferreira, V. F. (2009) Eur. J. Med. Chem., 44: 373–383.
  21. Genin, M. J., Allwine, D. a, Anderson, D. J., Barbachyn, M. R., Emmert, D. E., Garmon, S. a, Graber, D. R., Grega, K. C., Hester, J. B., Hutchinson, D. K., Morris, J., Reischer, R. J., Ford, C. W., Zurenko, G. E., Hamel, J. C., Schaadt, R. D., Stapert, D., & Yagi, B. H. (2000) J. Med. Chem., 43: 953–970.
  22. Buckle, D. R., Rockell, C. J., Smith, H., & Spicer, B. A. 1984, 27: 223–227.
  23. Alexacou, K.-M., Hayes, J. M., Tiraidis, C., Zographos, S. E., Leonidas, D. D., Chrysina, E. D., Archontis, G., Oikonomakos, N. G., Paul, J. V, Varghese, B., & Loganathan, D. (2008) Proteins, 71: 1307–1323.
  24. Brockunier, L. L., Parmee, E. R., Ok, H. O., Candelore, M. R., Cascieri, M. A., Colwell, L. F., Deng, L., Feeney, W. P., Forrest, M. J., Hom, G. J., MacIntyre, D. E., Tota, L., Wyvratt, M. J., Fisher, M. H., & Weber, A. E. (2000) Bioorganic Med. Chem. Lett., 10: 2111–2114.
  25. Fan, W.: Comprehensive Heterocyclic Chem. II, vol. 4, Pergamon, Oxford, UK (1996).
  26. Chem, A., & Ed, I. (2002) Angew. Chem. Int. Ed., 41: 2596–2599.
  27. Tornøe, C. W., Christensen, C., & Meldal, M. (2002) J. Org. Chem., 67: 3057–64.
  28. Gian Cesare Tron, Tracey Pirali, Richard A. Billington, P. L. C., & Giovanni Sorba, A. A. G. (2012) Med. Res. Rev., 29: 1292–1327.
  29. Steenackers, H., Ermolat’ev, D., Trang, T. T. T., Savalia, B., Sharma, U. K., De Weerdt, A., Shah, A., Vanderleyden, J., & Van der Eycken, E. V. (2014) Org. Biomol. Chem., 12: 3671–3678.
  30. Kovács, S., Zih-Perényi, K., Révész, Á., & Novák, Z. (2012) Synth., 44: 3722–3730.
  31. Wang, D., Salmon, L., Ruiz, J., & Astruc, D. (2013) Chem. Commun., 49: 6956.
  32. Kale, S. R., Kahandal, S. S., Gawande, M. B., & Jayaram, R. V. (2013) RSC Adv., 3: 8184.
  33. Grigorie, A. C., Muntean, C., & Stefanescu, M. (2015) Thermochim. Acta, 621: 61–67.
  34. Stoia, M., Istratie, R., & Păcurariu, C. (2016) J. Therm. Anal. Calorim., 125: 1185–1198.