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ABSTRACT: Let G be the connected graph with vertex set V(G) and edge set E(G).The first and 

second K Banhatti indices of G are defined as 
   

1
( ) [ Gue G
G d u d eB  

]and 

   
2
( ) [ ]Gue G
G d u d eB 

where ue  means that the vertex u  and edge e  are incident in G.The 

first and second K hyper Banhatti indices of G are defined as 
    2

1 [ ( ) ]G Gue
HB G d u d e 

and

    2

2 [ ( ) ]G Gue
HB G d u d e

 respectively . In this paper, we compute the first and second K 

Banhatti indices of toroidal polyhex network. In addition, the first and second K hyper Banhatti 

indices of toroidal polyhex networks are determined.  

KEYWORDS: carbon quantum dots, citrus lemon juice, fluorescent, hydrothermal method, cell 

imaging. 

GRAPPHICAL ABSTACT: 

 

 

1 - Introduction 

Let G be a connected graph with vertex set 

V(G) and edge set E(G).The 
 Gd v

of a 

vertex v  is the number of edges adjacent to v

. The edge connecting the vertices u and v  

will be denoted byuv . Let
 Gd e

 denote the 

degree of an edge e in G, which is defined by 

    ( ) 2G G Gd e d u d v  
 with e = .uv  For 

details about graph theory we refer [1]. 

Chemical reaction network theory is an area 

of applied mathematics that attempts to 

model the behaviour of real world chemical 

systems since its foundations in 1960s; it has 
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attracted a growing research community, 

mainly due to its applications in biochemistry 

and theoratical chemistry. It has also 

attracted from pure mathematicians due to 

interesting problems that arise from the 

mathematical patterns in structure of 

materials.   

Ceheminformatics is an emerging field in 

which quantitative structure-activity (QSAR) 

and sructure-property (QSPR) relationships 

predict the biological activities and 

properties of nanomaterial. In these studies, 

some physcio-chemical properties and 

topological indices are used to predict the 

bioactivity of chemical compounds [2,3]. 

The branch of chemistry which deals with the 

chemical structures with the help of 

mathematical tools is called mathematical 

chemistry. Chemical graph theory is the 

branch of mathematical chemistry that 

applies graph theory to the mathematical 

modeling of chemical phenomenan. In 

chemical graph theory, a molecular graph is 

asimple graph (having no loops and multiple 

edges) in which atoms and chemical bonds 

between them are represented by vertices and 

edges respectively. Topological index of a 

graph is a number that describe topology of 

understudy molecular structure [4,5]. 

The first and second K-Banhatti indices of G 

are defined as 

   2

(

1

( ) )

 ( ) ( ) ( ) ,  an ( ) ( ) )d ( .G G G

uv E G

G

uv E G

B GB G d u de d u ed
 

  
 

where ue means that the vertex u and edge e 

are incident in G. 

The first and second K-hyper Banhatti 

indices of G are defined as  

   
2 2

1 2

( ) ( )

( ) ( ) ( ) ,  and  ( ) ( ) ( ) .G G G G

uv E G uv E G

HB G d u d e HB G d u d e
 

    
 

We refer [6] for details about these indices.In 

this article, we compute first and second K 

Banhatti index and first and second hyper K- 

Banhatti index of toroidal polyhex network.  

2. Toroidal Polyhex Network 

The discovery of the fullerene molecules has 

stimulated many interests in other 

possibilities for carbons. Many properties of 

fullerenes can be studied using mathematical 

tools such as graph theory. A fullerene can be 

represented by a trivalent graph on a closed 

surface with pentagonal and hexagonal faces, 

such that its vertices are carbon atoms of the 

molecule. Two vertices are adjacent if there 

is a bond between corresponding atoms. In 

[7], authors considered fullerene’s extension 

to other closed surfaces and showed that only 

four surfaces, sphere, torus, Klein bottle and 

projective (elliptic) plane, are possible. The 

spherical and elliptic fullerenes have 12 and 

6 pentagons respectively. There are no 

pentagons in the toroidal’s and the Klein 

bottle’s fullerenes [8].  

A toroidal fullerene (toroidal polyhex), 

obtained from 3D Polyhex Torus Figure 1, is 

a cubic bipartite graph embedded on the torus 

such that each face is a hexagon. The torus is 

a closed surface that can carry the graphs of 

the toroidal polyhex in which all faces are 

hexagons and the degree of all vertices is 3. 

The optical and vibrational properties of 

toroidal carbon nanotubes can be found in 

[9]. There have appeared a few works in the 

enumeration of perfect matchings of toroidal 

polyhexes by applying various techniques, 

such as transfer-matrix and permanent of the 

adjacency matrix. Ye et al. [10] have studied 

a k-resonance of toroidal polyhexes. 

Classifications of all possible structures of 

fullerene Cayley graphs is given in [11] by 

Kang. The atom-bond connectivity index 

(ABC) and geometric–arithmetic index (GA) 

of the toroidal polyhex are computed in [12] 

by Baca et al. In [13-23], authors computed 

distance-based topological indices of eight 

infinite sequences of 3-generalized 

fullerenes. In [14], authors presented a new 

extension of the generalized topological 

indices (GTI) approach to represent 

topological indices in a unified way.  Let L 

be a regular hexagonal lattice and 
n

mP  be a 
m n  quadrilateral section (with m hexagons 

on the top and bottom sides and n hexagons 

on the lateral sides, n is even) cut from the 

regular hexagonal lattice L. First identify two 
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lateral sides of 
n

mP  to form a cylinder, and 

finally identify the top and bottom sides of 
n

mP  at their corresponding points, see Figure 

1. From this we get a toroidal polyhex { , }m nH
 

with mn hexagons.  

 
Fig 1. Polyhex Torus. 

The set of vertices of the toroidal polyhex is:  

{ , }( ) { , : 0 1,0 1}.i i
m n j jV H v v i n j m      

 
The set of edges of the toroidal polyhex is 

splitted into mutually disjoint subsets such 

that for even i such that 0 2,i n   we have 

{ : 0 1}i i
i j jA u v j m   

 and 

1' { : 0 1}.i i
i j jA v u j m   

 For i  odd and 

1 1,i n    we have 
{ : 0 1}i i

i j jB v u j m   
 

and 1' { : 0 1}.i i
i j jB u v j m   

For 0 1i n    

we have 
1{ : 0 1},i i

i j jC v u j m   
where i is 

taken modulo n and j is taken modulo m.  

Hence     

 

1
12

{ , } 2 2 2 1 2 1

0 0

( ) ' ' .

n

n

m n i i i i i

i i

E H A A B B C




 

 

   

 

 

We can easily observe from figure 2 that the 

number of vertices in { , }m nH
 are 2mn and the 

number of edges in { , }m nH
are 3mn. 

 
Fig 2. 2D-lattice graph of the toroidal polyhex. 

 

1. Computational results 

2. Theorem 1. Let { , }m nH
be the toroidal 

polyhex network. Then its first and 

second K Banhatti indices are; 

1 { , }( ) 42m nB H mn
 and 2 { , }( ) 72m nB H mn

 

Proof: Let { , }m nH
 be the toroidal polyhex 

network. There is only one type of edges in 

toroidal polyhex network based on degrees of 

end vertices of each edge. The edge partition 

,1 { }( )m nE H
contains 3mn  edges uv, where

= 3.u vd d
  

So, by definition  

 

 

{ , }

1 { , }

( )

( ) [ ( ) ( )]

               [( ( ) ( )) ( ( ) ( ))]

               3 [(3 4) (3 4)] 42 .

m n

m n G Gue

G G G Ge uv E H

B H d u d e

d u d e d v d e

mn mn

 

 

   

    




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   

{ , }

2 { , }

( )

( ) [ ( ) ( )]

                [( ( ) ( )) ( ( ) ( ))]

                3 [ 3.4 3.4 ] 72 .

m n

m n G Gue

G G G Ge uv E H

B H d u d e

d u d e d v d e

mn mn

 



 

  





Theorem 2. Let { , }m nH
be the toroidal polyhex network. Then its K hyper Banhatti indices 

are; 1 { , }( ) 294m nHB H mn
 and 2 { , }( ) 864m nHB H mn

  

Proof: By definition we have, 

   

   
{ , }

2

1 { , }

2 2

( )

2 2

( ) [ ]

                  [( ) ( ( ) ( )) ]

                  3 [(3 4) (3 4) ] 294 .

m n

m n G Gue

G G G Ge uv E H

HB H d u d e

d u d e d v d e

mn mn

 

 

   

    





 
Now, 

{ , }

2

2 { , }

2 2

( )

2 2

( ) [ ( ) ( )]

                  [( ( ) ( )) ( ( ) ( )) ]

                  3 [(3.4) (3.4) ] 864 .

m n

m n G G

G G G Ge uv E H

HB H d u d e

d u d e d v d e

mn mn

 



 

  



■ 

Acknowledgments. The author is thankful to 

Dr. Mehdi Alaeiyan Department of 

Mathematics, Iran University of Science and 

Technology (IUST), Prof. Mircea V. Diudea 

from Faculty of Chemistry and Chemical 

Engineering Babes-Bolyai University 

(Romania) and Prof. Ali Reza Ashrafi from 

Department of Mathematics of Faculty of 

Science of University of Kashan (Iran) for 

their precious support and suggestions. 

 

References 

1. West D B(1996) An Introduction to 

Graph Theory. Prentice-Hall. 

2. Rucker G, Rucker C (1999) J. Chem. 

Inf. Comput. Sci. 39, 788–802.  

3. Klavžar S, Gutman I (1996). J. Chem. 

Inf. Comput. Sci. 36, 1001–1003.  

4. Sardar MS, Zafar S, Farahani MR 

(2017) Open J. Math. Sci., 1(1), 

(2017), 44 – 51. 

5. Rehman HM, Sardar R, Raza A 

(2017) Open J. Math. Sci., 1(1), 

(2017), 62 - 71. 

6. Kulli VR, Chaluvaraju B, Boregowda 

HS (2017) Journal of Ultra 

Chemistry, 13(4), 81-87.  

7. Deza M, Fowler PW, Rassat A, 

Rogers KM (2000) J. Chem. Inf. 

Comput. Sci, 40, 550–558. 

8. Kirby EC, Pollak P (1998) J. Chem. 

Inf. Comput. Sci, 38, 1256–1256.  

9. Beuerle F, Herrmann C, Whalley AC, 

Valente C, Gamburd A, Ratner MA, 

Stoddart JF (2011) Chem. Eur. J, 17, 

3868-3875. 

10. Ye D, Qi Z, Zhang H (2009) SIAM J. 

Discret. Math. 23, 1023–1044. 

11. Kang MH (2011) Discret. Math. 311, 

2384–2395. 

12. Baca M, Horvathova J, Mokrisova M, 

Suhanyiova A (2015) Appl. Math. 

Comput. 251, 154–161. 

13. Mehranian Z, Ashrafi AR (2016) 

Springer International Publishing: 

Cham, Switzerland, 281–301. 

14. Ernesto E, Matamala AR (2008) J. 

Math. Chem. 43, 508–517. 

15. Yang H, Sajjad W, Baig AQ, 

Farahani MR (2017) International 



 

Farahani et al.                                                                                                                                       51 

 

 

   

 

Asian Journal of 

Nanoscience and 

Materials 

Journal of Advanced Biotechnology 

and Research. 8(2), 1582-1589. 

16. Huo Y, Liu JB, Baig AQ, Sajjad W, 

Farahani MR (2017). Journal of 

Computational and Theoretical 

Nanoscience. 14(4), 1832–1836. 

17. Dhavaseelan R, Baig AQ, Sajjad W, 

Farahani MR (2017) Journal of 

Informatics and Mathematical 

Sciences. 9(1), 201–215. 

18. Rezaei M, Baig AQ, Sajjad W, 

Farahani MR (2016). International 

Journal of Pure and Applied 

Mathematics. 111(3), 467-477. 

19. Farahani MR, Baig AQ, Sajjad W, 

Ramane HS (2018) International 

Journal of Advances in Mathematics. 

1, 101-108. 

20. Gao W, Shi L, Farahani MR (2017) 

Journal of Discrete Mathematical 

Sciences and Cryptography, 20(2), 

553-563. 

21. Farahani MR (2012) Acta Chim. 

Slov. 59, 779–783. 

22. Farahani MR (2012) Sci-Afric 

Journal of Scientific Issues, Research 

and Essays. 2(12), 567-570, 2014. 

23. Gao Y., Farahani M.R., Nazeer W 

(2018) Chemical Methodologies. 3, 

39-45.

 
 

 
How to cite this manuscript: Shama Firdous, Waqas Nazeer, Mohammad Reza 

Farahani. Mathematical Properties and Computations of Banahatti indices for a Nano-

Structure "Toroidal Polyhex Network". Asian Journal of Nanoscience and Materials, 

2018, 1, 47-51.  


