Document Type: Original Article

Authors

1 Department of Mathematics and Statistics, The University of Lahore, Lahore, Pakistan

2 Divisionof Science and Technology, University of Education, Lahore, 54000, Pakistan

3 Department of Applied Mathematics of Iran University of Science and Technology (IUST), Narmak, Tehran 16844, Iran

Abstract

Abstract: Let G be the connected graph with vertex set V(G) and edge set E(G).The first and second K Banhatti indices of G are defined as B1(G)ue[dG (u) +dG (e)] and B2(G)ue[dG (u) +dG (e)]  where ue means that the vertex u and edge e are incident in G.The first and second K hyper Banhatti indices of G are defined as HB1(G) = Σue[dg(u) + dG (e)]2 and HB2(G) = Σue[dg(u) d(e)]2 respectively . In this paper, we compute the first and second K Banhatti indices of toroidal polyhex network. In addition, the first and second K hyper Banhatti indices of toroidal polyhex networks are determined.

Keywords: Topological index, Banhatti index, Network.

Graphical Abstract

Keywords

Main Subjects

  1. West D B(1996) An Introduction to Graph Theory. Prentice-Hall.
  2. Rucker G, Rucker C (1999) J. Chem. Inf. Comput. Sci. 39, 788–802.
  3. Klavžar S, Gutman I (1996). J. Chem. Inf. Comput. Sci. 36, 1001–1003.
  4. Sardar MS, Zafar S, Farahani MR (2017) Open J. Math. Sci., 1(1), (2017), 44 – 51.
  5. Rehman HM, Sardar R, Raza A (2017) Open J. Math. Sci., 1(1), (2017), 62 - 71.
  6. Kulli VR, Chaluvaraju B, Boregowda HS (2017) Journal of Ultra Chemistry, 13(4), 81-87.
  7. Deza M, Fowler PW, Rassat A, Rogers KM (2000) J. Chem. Inf. Comput. Sci, 40, 550–558.
  8. Kirby EC, Pollak P (1998) J. Chem. Inf. Comput. Sci, 38, 1256–1256.
  9. Beuerle F, Herrmann C, Whalley AC, Valente C, Gamburd A, Ratner MA, Stoddart JF (2011) Chem. Eur. J, 17, 3868-3875.
  10. Ye D, Qi Z, Zhang H (2009) SIAM J. Discret. Math. 23, 1023–1044.
  11. Kang MH (2011) Discret. Math. 311, 2384–2395.
  12. Baca M, Horvathova J, Mokrisova M, Suhanyiova A (2015) Appl. Math. Comput. 251, 154–161.
  13. Mehranian Z, Ashrafi AR (2016) Springer International Publishing: Cham, Switzerland, 281–301.
  14. Ernesto E, Matamala AR (2008) J. Math. Chem. 43, 508–517.
  15. Yang H, Sajjad W, Baig AQ, Farahani MR (2017) International Journal of Advanced Biotechnology and Research. 8(2), 1582-1589.
  16. Huo Y, Liu JB, Baig AQ, Sajjad W, Farahani MR (2017). Journal of Computational and Theoretical Nanoscience. 14(4), 1832–1836.
  17. Dhavaseelan R, Baig AQ, Sajjad W, Farahani MR (2017) Journal of Informatics and Mathematical Sciences. 9(1), 201–215.
  18. Rezaei M, Baig AQ, Sajjad W, Farahani MR (2016). International Journal of Pure and Applied Mathematics. 111(3), 467-477.
  19. Farahani MR, Baig AQ, Sajjad W, Ramane HS (2018) International Journal of Advances in Mathematics. 1, 101-108.
  20. Gao W, Shi L, Farahani MR (2017) Journal of Discrete Mathematical Sciences and Cryptography, 20(2), 553-563.
  21. Farahani MR (2012) Acta Chim. Slov. 59, 779–783.
  22. Farahani MR (2012) Sci-Afric Journal of Scientific Issues, Research and Essays. 2(12), 567-570, 2014.
  23. Gao Y., Farahani M.R., Nazeer W (2018) Chemical Methodologies. 3, 39-45.