Document Type : Original Article

Authors

Department of Chemistry, Payame Noor University, P.O. Box 19395-4697 Tehran, Iran

Abstract

We describe the synthesis of silver nanoparticles (Ag-NPs) using aqueous extract of Dracocephalum lindbergii . UV–visible spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray energy dispersive spectrophotometer (EDX) were performed to ascertain the formation of Ag-NPs. UV-visible absorption spectra of the reaction medium containing silver nanoparticles showed maximum absorbance at 416 nm. The XRD pattern revealed the crystalline structure of SNPs. The SEM analysis showed the size and shape of the nanoparticles. The environmental friendly method provides simple, easy and cost effective faster synthesis of nanoparticles than chemical methods and can be used in several areas such as food, medicine.

Graphical Abstract

Green synthesis of nanosilver particles from extract of Dracocephalum Lindbergii

Keywords

Main Subjects

1. Jiang HQ, Manolache  S, Wong  ACL, Denes  FS (2004) J. Appl. Polym. Sci  93: 1411–1422.
2. Parikh DV, Fink  T (2005) Text. Res. J  75:134–138.
3. Alt  V, Bechert  T, Steinrücke  P, Wagener  M, Seidel  P, Dingeldein  E, Domann  E, Schnettler R, (2004) Biomaterials 25:4383–4391.
4. Gosheger  G, Hardes  J, Ahrens H, Streitburger  A, Buerger H, Erren M, Gunsel A, Kemper FH, W., Winkelmann C (2004) Biomaterials 25:5547–5556.
5. Rupp ME, Fitzgerald T, Marion N, Helget  V, Puumala S, Anderson  JR, Fey PD (2004) Am. J. Infect. Control 32:445–450.
6. Ohashi S, Saku S, Yamamoto K, (2004) J. Oral Rehabil 31: 364–367.
7. Bosetti M, Massè A, Tobin E, Cannas M (2002) Biomaterials 23 : 887–892.
8. Lee  HJ, Jeong SH, (2005) Text. Res. J  75: 551–556.
9. Dhillon GS, Brar  SK, S. Kaur, Verma M (2012) Crit. Rev. Biotechnol 32:49–73.
10. Gericke M, Pinches A (2006) Hydrometallurgy 83: 132–140.
11. Jain D, Kumar Daima H, Kachhwaha S, Kothari SL (2009) Dig. J. Nanomater. Biostructures 4:557–563.
12. Logeswari P, Silambarasan S, Abraham J (2013) Sci. Iran 20:1049–1054.
13. Bhattacharya D, Gupta  RK (2005) Crit. Rev. Biotechnol 25:199–204.
14. Korbekandi H, Iravani S, Abbasi S (2009) Crit. Rev. Biotechnol 29:279–306.
15. Anastas ZJ PT (2007)  washington.
16. Dahl  JA, Maddux  BLS, Hutchison JE (2007) Chem. Rev 107:2228–2269.
17. Shankar  SS, Rai  A, Ahmad  A, Sastry M (2004) J. Colloid Interface Sci 275:496–18.      Raveendran P, Fu  J, Wallen  SL (2003) J. Am. Chem. Soc 125:13940–13941.
19. Dhuper  S, Panda D, Nayak  PL (2012) Nano Trends A J. Nanotechnol. Its Appl 13:16–22.
20. Kalishwaralal K, Deepak  V, Ram Kumar Pandian  S, Kottaisamy  M, BarathManiKanth  S, Kartikeyan B, Gurunathan S (2010)  Colloids Surfaces B Biointerfaces 77:257–262.
21. Rechinger KH, (1982) Verlagsanstalt, Graz, Austria  218–231.
22. Zeng Q, Jin HZ, Fu JJ, Qin  JJ, Hu  XJ, Liu  JH, Yan  L, Chen  M, Zhang  WD (2010) Chem. Biodivers 7:1911–1929.
23. Cullity  BD (1978)  Addison-Wesley Publ. Co. Read. MA 100:105-279.
24. Gole A, Sainkar  SR, Sastry  M (2000) Chem. Mater 12:1234–1239.
25. Mulvaney P, (1996) Langmuir 12:788–800.
26. Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) ChemBioChem 3:461–463.
27. Gonzalo J, Serna R, Solís J, Babonneau D, Afonso CN (2003)  J. Phys. Condens. Matter 15:42.
28. Sondi I, Salopek-Sondi B (2004) J. Colloid Interface Sci  275:177–182.
29. Chen S,Webster  S, Czerw  R, Xu  J, Carroll DL (2004)  J. Nanosci. Nanotechnol 4:254–259.