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ABSTRACT: Silica supported-boron sulfonic acid (SBSA) was used as a cheap and mild bronsted 

acidic in the reaction of indole with aldehydes to afford the corresponding bis(indolyl)methanesin in 

solvent free grinding and room temperature. The catalyst is also effective in the reaction in good 

yields. This methodology offers several advantages, such as good yields, reusability of catalyst, short 

reaction times, simple procedure, and mild conditions. The catalyst can be recovered and reused 

without loss of activity. The work-up of the reaction consists of a simple filtration, followed by 

concentration of the crude product and purification. 
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1 - Introduction  

 Water pollution is a major global problem 

which requires ongoing evaluation and 

revision of water resource policy at all levels 

(international down to individual aquifers 

and wells). It has been suggested that it is the 

leading worldwide cause of deaths and 
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diseases Also, it accounts for the deaths of 

more than 14,000 people daily. An estimated 

700 million Indians have no access to a 

proper toilet, and 1,000 Indian children die 

of diarrheal sickness every day. Some 90% 

of China's cities suffer from some degree of 

water pollution, and nearly 500 million 

people lack access to safe drinking water [1]. 

The water pollution has damaged the food 

chain which is very important for the food 

preparation of plants through 

photosynthesis. When Filth is thrown in 

water the toxins travel from the water and 

when the animals drink that water they get 

contaminated and when humans tend to eat 

the meat of the animals is infected by toxins 

it causes further damage to the humans. 

Infectious diseases such as cholera and 

typhoid can be contracted from drinking 

contaminated water [2]. These may include 

organic and inorganic substances. Organic 

pollution (pesticides and active 

pharmaceutical compounds) occurs when an 

excess of organic matter, such as manure or 

sewage, enters the water. When organic 

pollution  increases in a pond, the number of 

decomposers will increase. These 

decomposers grow rapidly and use a great 

deal of oxygen during their growth, leading 

to depletion of the oxygen as the 

decomposition process occurs. Lack of 

oxygen can kill the aquatic organisms [3]. 

There is currently a large amount of 

information from the studies conducted 

around the world regarding the 

concentrations of a wide range of organic 

pollutants in natural waters, wastewater, and 

drinking water. The water utilities should 

consider pro-active monitoring for any new 

chemicals that may be discharged into water 

in some form. This monitoring should, 

wherever possible, include metabolites and 

degradation by-products of these pollutants, 

which in some cases may have more 

significant consequences than the parent 

compounds. Most of these methods are 

focused on target analysis with quantitative 

purposes and their scope rarely exceeds 

several tens of analytes, being quite unusual 

to find analytical methods for the 

determination of more than 100 organic 

pollutants. Over the last decade,there has 

been a notable increase in the use of full 

spectrum acquisition techniques such as, 

time-of-flight mass spectrometry (TOF MS) 

which allows acquiring a huge amount of 

chemical information on the sample in a 

single analysis. TOFMS and specially hybrid 

quadrupole-TOFMS (QTOFMS) have been 

successfully applied for screening purposes 

in combination with liquid-chromatography 

(LC) in different applied fields, like 

environmental analysis, food safety or 

toxicology [4]. Prediction of physico–

chemical properties of materials based on 

their molecular structure has been one of the 

wishes of scientists and engineers for a long 

time. One of the best methods which have 

been applied for this purpose is quantitative 

structure–property relationships (QSPR). 

Quantitative structure–retention 

relationships (QSRR) represent statistical 

models that quantify the relation between the 

structure of molecules and their 

chromatographic retention time, allowing 

the prediction of the RT of novel compounds 

[5]. QSRR on the RT have been reported for 

different types of compounds [6,7]. The aim 

of the present study is estimation of ability 

optimal descriptors calculated with linear 

regression (the partial least squares (PLS)) 

and non-linear regressions (the kernel partial 
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least squares (KPLS) and Levenberg- 

Marquardt artificial neural network (L-M 

ANN)) in QSRR analysis of retention time 

(RT) of pesticides and active pharmaceutical 

compounds in water samples of different 

types (surface and wastewaters). The 

stability and predictive power of these 

models were validated using Leave-Group-

Out Cross-Validation (LGO CV) and 

external test set, techniques. 

2 - Computational 

2.1 - Computer hardware and 

software 

   A Pentium IV personal computer (CPU at 

3.06 GHz) with the Windows XP operating 

system was used. The structures of the 

organic contaminants were drawn with 

HyperChem version 7.0. The all molecules 

were preoptimized using molecular 

mechanics AM1 method in the HyperChem 

program. Some quantum descriptor such as 

polarizability and orbital energy of LUMO 

were calculated by using the HyperChem 

software. The output files exported from 

Dragon for generating descriptors which was 

developed by Todeschini et al [8].  The GA-

PLS, GA-KPLS, L-M ANN, cross 

validation, and other calculations were 

performed in MATLAB (Version 7.0, Math 

works, Inc). 

 

2.2 -   Data set 

   The group of pesticides and 

pharmaceutically active compounds and 

some of their more relevant metabolites 

comprise 87 organic pollutants belonging to 

different therapeutical groupsAll the 

materials purchased from Sigma–Aldrich 

(Steinheim, Germany), Merck (Mollet del 

Vallés, Spain), and LGC Promechem 

(Barcelona, Spain) at analytical grade (purity 

>95%). These data with their RT values 

extracted from the literature [9]. These data 

were obtained using liquid chromatography–

electrospray quadrupole-time-of-flight mass 

spectrometry (LC–QTOFMS). The name of 

the studied compounds and their 

experimental RT values for data set are 

shown in Table 1.  

2.3 -   Determination of molecular 

descriptors 

   Molecular descriptors are defined as 

numerical characteristics associated with 

chemical structures. The molecular 

descriptor is the final result of a logic and 

mathematical procedure which transforms 

chemical information encoded within a 

symbolic representation of a molecule into a 

useful number applied to correlate physical 

properties. The Dragon software was used to 

calculate the descriptors in this research and 

a total of molecular descriptors, from 18 

different types of theoretical descriptors, 

were calculated for each molecule. Since the 

values of many descriptors are related to the 

bonds length and bonds angles, the chemical 

structure ofthe every molecule must be 

optimized prior tocalculating its molecular 

descriptors. For this reason, the chemical 

structure of the 87 studied molecules were 

drawn with Hyperchem software and saved 

with the HIN extension. To optimize the 

geometry of these molecules, the AM1 

geometrical optimization was applied. After 

optimizing the chemical structures of the all 

compounds, the molecular descriptors were 

calculated using Dragon. A wide variety of 

descriptors have been reported in the 

literature, having been used in QSRR 

analysis. 
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2.4 -   Data pre-processing 

   Each set of the calculated descriptors was 

collected in a separate data matrix Di with a 

dimension of (m×n), where m and n are 

being the number of molecules and the 

number of descriptors, respectively. 

Grouping of descriptors was based on the 

classification achieved by Dragon software. 

In each group, the calculated descriptors 

were searched for constant or near constant 

values for all molecules and those detected 

were removed. Scaling and centering is one 

of the pre-processing methods we need 

before performing the regression methods 

combined with FE. The results of the 

projection methods depend on the 

normalization of the data. Descriptors with 

small absolute values have a small 

contribution to overall variances; this biases 

towards other descriptors with higher values. 

With appropriate scaling, equal weights are 

assigned to each descriptor, so that the 

important variables in the model can be 

focused.

 

Table 1. The compounds, retention time (min), calculated and RMSE values by GA-PLS, GA 

KPLS and L-M ANN models. 

No Compounds RT 

Cal GA-

PLS 

RMS

E 

Cal GA-

KPLS 

RMS

E 

Cal L-M 

ANN 

RMS

E 

 Training Set      

1 Trans3hy.cotinine 1.02 1.05 0.004 1.02 0.987 0.97 0.007 

2 Nicotine 1.19 1.17 0.002 1.19 0.993 1.25 0.009 

3 Salicylic acid 1.29 1.16 0.016 1.29 1.103 1.33 0.006 

4 Amidotrizoate 1.50 2.01 0.062 1.50 1.873 1.41 0.012 

5p Theobromine 1.91 1.90 0.002 1.91 1.783 2.13 0.053 

6 Ranitidine 2.18 2.70 0.064 2.18 3.032 2.22 0.006 

7 4-aminoantipiryne 2.23 2.28 0.012 2.18 2.009 2.23 0.006 

8 Amoxicillin 2.31 2.40 0.011 2.31 2.124 2.24 0.010 

9p Theophylline 2.84 3.13 0.036 2.84 4.249 2.49 0.085 

10 Atenolol 3.03 2.73 0.036 3.03 3.357 2.84 0.027 

11 Lincomycin 3.32 3.70 0.046 3.32 3.446 3.01 0.043 

12 Codeine 3.43 4.06 0.077 3.43 3.498 3.20 0.032 

13 Paraxanthine 3.55 2.87 0.082 3.55 3.747 3.58 0.004 

14p Salbutamol 3.69 4.80 0.135 3.69 3.968 3.69 0.000 

15 Hydrochlorothiazide 4.34 5.56 0.149 4.34 5.269 4.11 0.032 

16 Acetaminophen 4.49 5.47 0.119 4.49 3.968 4.32 0.024 

17 Famotidine 4.63 4.99 0.043 4.63 3.828 4.79 0.023 

18p Caffeine 4.73 4.02 0.086 4.73 5.302 4.54 0.046 

19 

4-

dimethylaminoantipiryn

e 4.75 6.14 0.168 4.75 6.692 5.11 0.050 

20 Mepivacaine 4.86 4.45 0.050 4.86 7.066 4.39 0.066 

21 Sulfadiazine 5.13 5.47 0.042 5.13 5.054 4.94 0.027 

22p mecoprop 5.16 4.17 0.120 5.16 4.707 5.65 0.118 

23 Ofloxacin 5.22 5.14 0.009 5.22 7.365 5.51 0.041 

24 Antipyrine 5.34 7.08 0.211 5.34 5.161 5.13 0.029 
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25 Tetracycline 5.41 7.04 0.198 5.41 6.774 5.87 0.065 

26p Acetanilide 5.57 5.57 0.000 5.57 8.226 5.86 0.070 

27 Norfloxacin 5.59 7.43 0.223 5.59 7.074 5.79 0.028 

28 

N-acetyl-4-

aminoantipiryne 5.60 6.09 0.060 5.60 7.892 5.12 0.067 

29p 

N-formyl-4-

aminoantipiryne 5.69 6.47 0.094 5.69 4.592 5.41 0.068 

30 Metoprolol 5.73 6.70 0.118 5.73 5.134 5.24 0.069 

31p Sulfathiazole 5.76 6.90 0.138 5.76 7.909 4.64 0.271 

32 Ciprofloxacin 5.79 6.77 0.119 5.79 6.376 5.22 0.079 

33 Cefotaxime 5.98 7.24 0.153 5.98 8.511 5.65 0.046 

34p Pentoxifylline 6.08 6.73 0.078 6.08 7.992 6.51 0.105 

35 Omeprazole 6.13 7.53 0.170 6.13 7.853 6.15 0.003 

36 Sulfamethazine 6.17 6.84 0.082 6.17 6.431 6.12 0.007 

37 Venlafaxine 6.34 7.38 0.126 6.34 5.809 6.60 0.036 

38p Propanolol 6.36 8.78 0.293 6.36 5.781 6.02 0.082 

39 Ifosfamide 6.38 8.25 0.227 6.38 5.958 6.49 0.015 

40 Clofibric acid 6.47 6.41 0.007 6.47 7.089 6.48 0.002 

41 Cyclophosphamide 6.57 7.57 0.122 6.57 9.193 6.01 0.078 

42 Pravastatin 6.65 5.84 0.098 6.65 7.602 6.24 0.057 

43p Citalopram Hydrobr 6.74 6.42 0.039 6.74 9.242 6.76 0.005 

44 Erythromycin 6.94 8.90 0.237 6.94 7.790 6.77 0.023 

45 Lansoprazole 7.15 8.59 0.174 7.15 8.009 6.83 0.045 

46 Amitriptyline 7.34 5.93 0.171 7.34 8.188 7.74 0.056 

47 Sulfamethoxazole 7.36 8.37 0.122 7.36 8.012 7.09 0.038 

48p Carbamazepine 7.48 8.02 0.066 7.48 

10.70

5 7.94 0.111 

49 Bezafibrate 7.58 10.18 0.315 7.58 6.094 7.79 0.029 

50 Fluoxetine 7.78 7.54 0.029 7.78 7.844 8.54 0.106 

51p Clotrimazole 7.99 6.70 0.156 7.99 6.667 8.82 0.202 

52 Methylprednisolone 8.02 8.71 0.084 8.02 

10.30

8 8.02 0.001 

53 Propyphenazone 8.06 11.21 0.381 8.06 

10.11

6 7.16 0.126 

54 Loratadine 8.21 11.11 0.352 8.21 

12.21

7 7.64 0.080 

55 Ketorolac 8.32 9.46 0.138 8.32 9.875 7.84 0.067 

56p Clomipramine 8.37 9.97 0.194 8.37 9.040 8.74 0.089 

57 Tamoxifen 8.94 11.30 0.286 8.94 8.396 8.25 0.097 

58 Fenoprofen 9.22 7.96 0.152 9.22 

11.41

1 9.80 0.081 

59 Indomethacin 9.51 7.61 0.230 9.51 

12.49

0 10.29 0.109 

60p Diazepan 9.52 10.71 0.144 9.52 

10.12

1 8.17 0.328 

61 Ketoprofen 9.60 7.72 0.228 9.6 7.746 8.94 0.092 
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62 Ibuprofen 

9.91

0 10.61 0.085 9.91 

10.84

1 9.16 0.105 

63 Fenofibric acid 

10.3

0 9.39 0.103 10.24 

13.59

4 10.84 0.076 

64p Chlorophene 

10.2

4 13.10 0.340 10.3 

13.96

4 9.56 0.164 

65 Gemfibrozil 

10.5

2 12.03 0.183 10.52 

15.19

1 10.99 0.065 

66p Mevastatin 

11.4

3 9.25 0.264 11.43 

15.90

3 12.77 0.326 

67 Mefenamic Ac 

11.5

2 14.68 0.383 11.52 

12.18

2 11.87 0.049 

68 Fenofibrate 

13.2

1 15.09 0.228 13.21 

16.30

9 14.16 0.133 

 Test Set      

69 Cotinina 1.19 1.56 0.084 1.31 0.026 1.39 0.046 

70 

4-

methylaminoantipyrine 1.95 2.74 0.182 1.81 0.031 2.61 0.151 

71 Terbutaline 2.77 2.95 0.042 2.07 0.160 1.98 0.181 

72 Metronidazole 3.45 4.62 0.269 3.14 0.071 2.01 0.330 

73 Sotalol 4.53 3.66 0.200 3.85 0.157 3.66 0.200 

74 Trimethoprim 4.97 3.74 0.283 7.13 0.495 6.24 0.291 

75 Nadolol 5.35 5.35 0.000 4.27 0.247 5.39 0.009 

76 Sulfapyridine 5.60 5.59 0.002 3.98 0.372 6.52 0.211 

77 Furosemide 5.95 6.47 0.119 5.92 0.006 5.03 0.211 

78 Azithromycin 6.14 3.59 0.585 7.73 0.365 5.72 0.096 

79 Primidone 6.57 6.40 0.040 9.27 0.620 6.19 0.087 

80 Paroxetine 7.01 6.32 0.157 8.24 0.282 7.66 0.149 

81 Clarithromycin 7.38 8.62 0.284 6.09 0.296 8.42 0.239 

82 Carbamazepine 7.88 8.82 0.215 7.51 0.084 7.34 0.124 

83 Ketoprofen 8.07 6.70 0.313 7.16 0.210 6.34 0.397 

84 Naproxen 9.20 10.02 0.188 6.50 0.619 9.37 0.039 

85 Diclofenac 9.55 10.47 0.212 9.72 0.038 11.42 0.429 

86 Indomethacin 

10.3

6 13.16 0.642 12.64 0.523 11.98 0.372 

87 Simvastatin 

12.5

1 10.64 0.429 9.61 0.666 15.21 0.619 

P: Prediction Set

2.5 - Nonlinear model 

2.5.1 -  Artificial neural network 

   A three-layer back propagation artificial 

neural network (ANN) with a sigmoid 

transfer function was used to investigatethe 

feature sets. The descriptors from the 

calibration set were used for the model 

generation whereas the descriptors from the 

prediction set were used to stop the 

overtraining of network. The descriptors 

from the test set were used to verify the 
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predictivity of the model. Before training the 

networks, the input and output values were 

normalized with auto-scaling of the all data. 

The goal of training the network is to 

minimize the output errors by changing the 

weights between the layers. 

   (1)  

   In this,  is the change in the weight 

factor for each network node, α is the 

momentum factor, and F is a weight update 

function, which indicates how weights are 

changed during the learning process. The 

weights of hidden layer were optimized 

using the Levenberg-Marquardt algorithm, a 

second derivative optimization method [10]. 

3  - Results and discussion 

3.1 - Linear model  

3.1.1 -  Results of the GA-PLS model 

The best model is selected on the basis of the 

highest square correlation coefficient leave-

group-out cross validation (R2), the least 

root mean squares error (RMSE) and relative 

error (RE). These parameters are probably 

the most popular measure of how well a 

model fits the data. The best GA-PLS model 

contains eleven selected descriptors in six 

latent variables space. The R2, mean RE, and 

RMSE for training and test sets were (0.855, 

0.807), (16.76, 17.11) and (0.13, 0.22), 

respectively. The predicted values of RT are 

plotted against the experimental values for 

training and test sets in Fig 1a. The residuals 

(predicted RT− experimental RT) obtained 

by the GA-PLS modeling versus the 

experimental RT values are shown in Fig. 

1b. 

Fig 1. (a) Plots of predicted retention time 

against the experimental values and (b) the 

residual vs. the experimental RT by GA-

PLS model 

In general, the number of components (latent 

variables) is less than the number of 

independent variables in PLS analysis. The 

PLS model uses higher number of 

descriptors that allow the model to extract 

better structural information from 

descriptors, resultingin a lower prediction 

error. The values of the experimentally 

measured, calculated, and the RMSE are 

demonstratedin Table 1. 

 

3.2. Nonlinear model 

ijW

1,,  nijnnij WFW 
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3.2.1 Results of the GA-KPLS model 

   In this paper a radial basis kernel function, 

k(x,y)=exp(||x-y||2/c), was selected as the 

kernel function with 
2rmc  where r is a 

constant that can be determined by 

considering the process to be predicted (here 

r was set to be 1), m is the dimension of the 

input space and 
2  is the variance of the data 

[11]. It means that the value of c depends on 

the system under the study. The 9 descriptors 

in 5 latent variables space chosen by GA-

KPLS feature selection methods were 

contained. The R2, mean RE, and RMSE for 

training and test sets were (0.848, 0.774), 

(20.34, 18.58) and (0.16, 0.28), respectively. 

the results show  GA-PLS model are 

superior to GA-KPLS method. Fig. 2a 

illustrates the plot of the GA-KPLS 

predicted versus experimental values for RT 

of all of the molecules in the data set. The 

plots of the residuals versus the experimental 

RT values obtained by the GA-KPLS 

modeling, is demonstrated in Fig. 2b.  

 
Fig 1. (a) Plots of predicted RT versus the experimental 

values and (b) the residual against the experimental RT by 

GA-KPLS model 

3.2.2. Results of the L-M ANN model 

To improve the predictive performance of 

the nonlinear QSRR model, the L-M ANN 

modeling was performed. For ANN 

generation, data set was separated into three 

groups: calibration and prediction (training) 

and test sets. All molecules were randomly 

placed in these sets. A three-layer network 

with a sigmoid transfer function was 

designed for each ANN. Before training the 

networks the input and output values were 

normalized between -1 and 1. The network 

was then trained using the training set by the 

back propagation strategy for optimization 

of the weights and bias values. The proper 

number of nodes in the hidden layer was 

determined by training the network with 

different number of nodes in the hidden 

layer. The root-mean-square error (RMSE) 

value measures how good the outputs are in 

comparison with the target values. It should 

be noted that for evaluating the overfitting, 

the training of the network for the prediction 

of RT must stop when the RMSE of the 

prediction set begins to increase while 

RMSE of calibration set continues to 

decrease. Therefore, training of the network 

was stopped when overtraining began. All of 

the above mentioned steps were carried out 

using basic back propagation, conjugate 

gradient and Levenberge-Marquardt weight 

update functions. It was realized that the 

RMSE for the training and test sets are 

minimum when three neurons were selected 

in the hidden layer. Finally, the number of 

the iterations was optimized with the 

optimum values for the variables. It was 

realized that after 18 iterations, the RMSE 

for prediction set were minimum. The 

RMSE, mean relative error and R2 for 

calibration, prediction and test sets were 

(0.05, 5.23, 0.978), (0.12, 7.81, 0.938) and 

(0.15, 12.90, 0.906), respectively. The 

residuals of L-M ANN predicted values of 

RT against the experimental values for 
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training and test sets are plotted in Fig.3a and 

Fig.3b. 

 

Fig 2. Plot of residuals obtained by L-M ANN against the 

experimental RT values (a) training set of molecules and 

(b) for test set 

As the calculated residuals are distributed on 

both sides of the zero line, one may conclude 

that there is no systematic error in the 

development of the Neural Network. In 

Table 1, the predicted and RMSE values of 

RT obtained by the three models are 

presented. Comparison between these values 

and other statistical parameter reveals the 

superiority of the L-M ANN model over 

other model. The key strength of neural 

networks, unlike regression analysis, is their 

ability to flexible mapping of the selected 

features by manipulating their functional 

dependence implicitly. The statistical 

parameters reveal the high predictive ability 

of L-M ANN model. The plot of the 

predicted RT versus the experimental RT 

values by L-M ANN for training and test sets 

are present in Fig.4a and Fig 4b. Obviously, 

there is a close agreement between the 

experimental and predicted RT and the data 

represent a very low scattering around a 

straight line with respective slope and 

intercept close to one and zero. As can be 

seen in this section, the L-M ANN is more 

reproducible than other models for modeling 

the RT of organic contaminants in waters. 

 

Fig 4. Plot of predicted RT obtained by L-M ANN against 

the experimental values (a) for training set and (b) test set. 

3.3. Model validation  
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   The accuracy of the proposed models was 

illustrated using the evaluation techniques 

such as leave group out cross-validation 

(LGO-CV) procedure, validation through an 

external test set. In addition, chance 

correlation procedure is a useful method to 

assess the accuracy of the resulted model, by 

which one can make sure if the results were 

obtained by chance or not. Cross validation 

is a popular technique used to explore the 

reliability of statistical models. Based on this 

technique, a number of modified data sets 

are created by deleting in each case one or a 

small group (leave-some-out) of objects. For 

each data set, an input–output model is 

developed, based on the utilized modeling 

technique. Each model is evaluated, by 

measuring its accuracy in predicting the 

responses of the remaining data (the ones or 

group data that have not been utilized in the 

development of the model). In particular, the 

LGO-CV procedure was utilized in this 

study. A QSRR model was then constructed 

on the basis of this reduced data set and 

subsequently used to predict the removed 

data. This procedure was repeated until a 

complete set of predicted was obtained. The 

statistical significance of the screened model 

was judged by the correlation coefficient 

(Q2). The predictive ability was evaluated 

by using the cross validation coefficient (Q2 

or R2cv). The accuracy of cross validation 

results is extensively accepted in the 

literature considering the Q2 value. In this 

sense, a high value of the statistical 

characteristic (Q2 > 0.5) is considered as 

proof of the high predictive ability of the 

model.The data set should be divided into 

three new sub-data sets, one for calibration 

and prediction (training), and the other one 

for testing. The calibration set was used for 

generating the model. The prediction set was 

applied dealing with overfitting of the 

network, whereas test set which its 

molecules have no role in model building 

was used for the evaluation of the predictive 

ability of the models for external set. In this 

work, in each running program, from all 87 

components, 51 components are in 

calibration set, 17 components are in 

prediction set and 19 components are in test 

set. The result clearly displayed a significant 

improvement of the QSRR model 

consequent to non-linear statistical treatment 

and a substantial independence of model 

prediction from the structure of the test 

molecule. In the above analysis, the 

descriptive power of a given model has been 

measured by its ability to predict RT of 

unknown drug molecules [4-7].  

 

4. Conclusion 

   The GA-PLS, GA-KPLS, and L-M ANN 

 models wereused to predict the RT values of 

large number pesticides and active 

pharmaceutical compounds in wastewater 

effluent and river water samples. High 

correlation coefficients and low prediction 

errors confirmed the good predictability of 

models. All methods seemed to be useful, 

although a comparison between these 

methods revealed the slight superiority of the 

L-M ANN over other models. Application of 

the developed model to a testing set of 19 

compounds demonstrates that the new model 

is reliable with good predictive accuracy and 

simple formulation. The QSRR procedure 

allowed us to achieve a precise and relatively 

fast method for determination of RT of 

different series of organic micro-

contaminants in wastewater and river to 
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predict with sufficient accuracy the RT of 

new substituted compounds.  
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