Document Type: Original Article

Authors

1 Department of Inorganic and Analytical chemistry, Andhra University, Visakhapatnam-530003, India

2 Department of Applied Chemistry, AdamaScience and Technology University, 1888, Ethiopia

3 AU College of Pharmaceutical Science, Andhra University, Visakhapatnam-530003, India

4 Faculty of Natural and Computational Sciences, Woldia University, 400, Ethiopia

Abstract

Facile and green one pot hydrothermal method was used for synthesis of fluorescent carbon quantum dots (CQDs) using citrus lemon juice as precursor. The synthesized CQDs were characterized using UV–Vis spectrophotometer, fluorescence spectrometer, transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), field emission scanning electron microscope equiped with energy dispersive X-ray spectroscopy (FESEM-EDS) and fluorescence microscopy. The obtained CQDs have high photoluminescence of 10.20% quantum yield. The photoluminescence intensity of CQDs depends on pH of the solution and maximum intensity obtained at pH of 6. The particle size of the carbon dots were distributed in narrow range of 2–10 nm with an average of 5.8 nm. The highly water soluble CQDs have high cell viability even at high concentration which rich up to 85%. MTT assay was used to investigate the potential application of CQDs and the results indicated that the material can be used as florescent probe in the cell imaging.

Graphical Abstract

Keywords

Main Subjects

1. X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, K. Raker and W. A. Scrivens (2004) J. Am. Chem. Soc. 126: 12736–12737.

2. Y.-P. Sun, B. Zhou, Y. Lin, W. Wang, K. A. Shiral Fernando, P. Pathak, M. J. Meziani, B. A. Harruff, X. Wang, H. Wang, P. G. Luo, H. Yang, M. E. Kose, B. Chen, L. Monica Veca and S.-Y. Xie (2006) J. Am. Chem. Soc. 128: 7756–7757.

3. S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang and B. Yang (2015) Nano Res. 8: 355–381.

4. Q. Liang, W. Ma, Y. Shi, Z. Li and X. Yang (2013) Carbon. 60: 421–428.

5. J. Zhou, X. Shan, J. Ma, Y. Gu, Z. Qian, J. Chen and H. Feng (2014) RSC Adv. 4: 5465.

6. H. Yukawa, R. Tsukamoto, A. Kano, Y. Okamoto, M. Tokeshi, T. Ishikawa, M. Mizuno, and Y. Baba (2013) J. Cell Sci. Ther. 43:1

7. H. Ding, L.-W. Cheng, Y.-Y. Ma, J.-L. Kong and H.-M. Xiong (2013) New J. Chem. 37: 2515.

8. X. Yang, Y. Wang, X. Shen, C. Su, J. Yang, M. Piao, F. Jia, G. Gao, L. Zhang and Q. Lin (2017) J. Colloid Interface Sci. 492: 1–7.

9. L. Cao, S.-T. Yang, X. Wang, P. G. Luo, J.-H. Liu, S. Sahu, Y. Liu and Y.-P. Sun (2012) Theranostics 2: 295–301.

10. F. Wu, H. Su, K. Wang, W.-K. Wong and X. Zhu (2017) Int. J. Nanomedicine 12: 7375–7391.

11. T. N. J. I. Edison, R. Atchudan, M. G. Sethuraman, J.-J. Shim and Y. R. Lee (2016) J. Photochem. Photobiol. B 161: 154–161.

12. J. Wei and J. Qiu (2014) Adv. Eng. Mater. 17: 138–142.

13. R. Jelinek (2016) Carbon Quantum Dots: Synthesis, Properties and Applications, Springer.

14. H. M. R. Gonçalves, A. J. Duarte and J. C. G. Esteves da Silva (2010) Biosens. Bioelectron. 26: 1302–1306.

15. Z. Yan, J. Shu, Y. Yu, Z. Zhang, Z. Liu and J. Chen (2015) Luminescence 30: 388–392.

16. D. Kumar, K. Singh, V. Verma and H. S. Bhatti (2014) Journal of Bionanoscience 8: 274–279.

17. A. Sachdev and P. Gopinath (2015) Analyst 140: 4260–4269.

18. A. Prasannan and T. Imae (2013) Ind. Eng. Chem. Res. 52: 15673–15678.

19. Y. Dong, J. Shao, C. Chen, H. Li, R. Wang, Y. Chi, X. Lin and G. Chen (2012) Carbon 50: 4738–4743.

20. S. Lu, S. Guo, P. Xu, X. Li, Y. Zhao, W. Gu and M. Xue (2016) Int. J. Nanomedicine. 11: 6325–6336.

21. A. Rauf, G. Uddin and J. Ali (2014) Org. Med. Chem. Lett.  4: 5.

22. K. L. Penniston, S. Y. Nakada, R. P. Holmes and D. G. Assimos (2008) J. Endourol. 22: 567–570.

23. D. Magde, G. E. Rojas and P. G. Seybold (1999) Photochem. Photobiol. 70: 737.

24. Z. S. Qian, L. J. Chai, Y. Y. Huang, C. Tang, J. J. Shen, J. R. Chen and H. Feng (2015) Biosens. Bioelectron. 68: 675–680.

25. A. B. Bourlinos, A. Stassinopoulos, D. Anglos, R. Zboril, M. Karakassides and E. P. Giannelis (2008) Small 4: 455–458.

26. K. A. S. Fernando, S. Sahu, Y. Liu, W. K. Lewis, E. A. Guliants, A. Jafariyan, P. Wang, C. E. Bunker and Y.-P. Sun (2015) ACS Appl. Mater. Interfaces 7: 8363–8376.

27. S. N. Baker and G. A. Baker (2010) Angew. Chem. Int. Ed Engl. 49: 6726–6744.

28. Y. Shi, Y. Pan, H. Zhang, Z. Zhang, M.-J. Li, C. Yi and M. Yang (2014) Biosens. Bioelectron. 56: 39–45.

29. P. Liu, C. Zhang, X. Liu and P. Cui (2016) Appl. Surf. Sci.  368: 122–128.

30. K. Dimos (2016) Curr. Org. Chem.  20: 682–695.

31. Q.-Y. Cai, J. Li, J. Ge, L. Zhang, Y.-L. Hu, Z.-H. Li and L.-B. Qu (2015) Biosensors and Bioelectronics 72: 31–36.

32. L. Tian, D. Ghosh, W. Chen, S. Pradhan, X. Chang and S. Chen (2009) Chem. Mater. 21: 2803–2809.

33. S. Zhu, X. Zhao, Y. Song, S. Lu and B. Yang (2016) Nano Today 11: 128–132.

34. A. Hao, X. Guo, Q. Wu, Y. Sun, C. Cong and W. Liu (2016) J. Lumin.  170: 90–96.

35. R. Jelinek (2016) Carbon Nanostructures 29–46.