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ABSTRACT: A quantitative structure–retention relation (QSRR) study was conducted on the 

range-scaling transformation (Xa) of the nanoparticle compounds which obtained by comprehensive 

two-dimensional gas chromatography (GC×GC) stationary phases consisting of thin films of the 

gold-centered monolayer protected nanoparticles (MPNs) system. The genetic algorithm was used as 

descriptor selection and model development method. Modeling of the relationship between the 

selected molecular descriptors and the retention time was achieved by linear (partial least square; 

PLS) and nonlinear (Levenberg-Marquardt artificial neural network; L-M ANN) methods. Linear 

and nonlinear methods resulted in an accurate prediction whereas more accurate results were obtained 

by L-M ANN model. 

KEYWORDS: Nanoparticle compounds; Gold-centered monolayer protected nanoparticles; 

Comprehensive two-dimensional gas chromatography; QSRR; Levenberg-Marquardt artificial 

neural network. 
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Introduction  

For decades, chromatographers have utilized 

nanometersized materials in the 

development of highly efficient 

chromatographic stationary phases. These 

materials offer a variety of advantages from 

improved mass transfer characteristics to 

greater stability of traditional polymer 

phases by incorporating nanoparticle 

additives. Nanoparticles on the order of 10 

nm in diameter have also been used to 

stabilize polymer stationary phases for gas 
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chromatography (GC), similar in concept to 

that for support coated open tubular 

columns. The unaccompanied use of 

nanoparticles as chromatographic stationary 

phases has been put forth. Both silica and 

polymer nanoparticles have been applied in 

electrophoretic chromatography as a 

stationary phase [1-4]. In separation science, 

nanoparticles have been used as novel 

stationary phases to provide high separation 

efficienc for various analytes. Since the 

nanoparticles are too small to be packed into 

the column, they were used mostly as 

pseudostationary phases to enhance the 

separation performance [5–8]. The most 

improtant advantage of the GC×GC over 

conventional GC is its increased resolution 

power as the peak capacity in GC×GC is the 

product of the peak capacity of each 

separation column [9, 10]. The use of 

monolayer-protected gold nanoparticles 

(MPNs) as a stationary phase for open 

tubular GC has been reported [11-13]. The 

electronic interactions of the polar stationary 

phase material with itself and/or the capillary 

wall tend to cause non-uniform deposition 

within the capillary. After initial failures for 

satisfactory polar MPN column (4-

chlorobenzenethiol MPNs) production using 

the procedure established for the nonpolar 

MPN column (dodecanethiol MPN column) 

production, it was determined that a “slightly 

polar” capillary would be used instead of the 

deactivated silica that is usually purchased 

for column preparation. This transformation 

was applied to the retention time data of 55 

probe analytes of varying chemical make-up. 

To calculate Xa, one first makes a list of the 

relative retention times for all the analytes in 

the study, with the relative retention time 

equal to the retention time minus the dead 

time [14, 15]. The Xa for a given analyte is 

calculated by dividing the relative retention 

time of the analyte to the relative retention 

time of the longest retained analyte. This 

normalization approach allows for an 

objective comparison between two 

stationary phases. In this instance the longest 

retained analyte was 1-hexanol for 4-

chlorobenzenethiol MPNs stationary phase 

column. In addition, the chromatographic 

retention prediction methodologies can be 

valuable starting points for developing the 

GC method. A promising approach is the use 

of quantitative structure–retention 

relationship (QSRR) [17-19]. In 

chromatography, QSRR have been applied 

to: (i) gain a better understanding of the 

molecular mechanism of the 

chromatographic separation process; (ii) 

identify the most informative structure 

related properties of analytes; (iii) 

characterize stationary phases, and (iv) 

predict retention for new analytes [17]. 

There is a trend to develop QSRR using a 

variety of methods. In particular, genetic 

algorithm (GA) is frequently used as search 

algorithms for variable selection in 

chemometrics and QSRR. The GA provides 

a “population” of models, from which it 

could be difficult to identify the most 

significant or relevant models (which may be 

preferred in certain uses such as, regulatory 

toxicology prediction) [20]. Partial least 

square (PLS) is the most commonly used 

multivariate calibration method.  Moreover, 

non-linear statistical treatment of QSRR data 

is expected to provide models with better 

predictive quality compared with the related 

PLS models. In this perspective, artificial 

neural network (ANN) modelling has 

become quite common in the QSRR field 

[21-23]. Extensive use of ANN, which does 

not require the “a priori” knowledge of the 

mathematical form of the relationship 

between the variables, largely rests on its 

flexibility functions of any complexity can 

be apply. In this research, GA-PLS and L-M 

ANN were employed to generate the QSRR 

models that correlate the structure of the 

nanoparticles.  

2 - Material and methods 

2.1 -  Data set 
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    Range-scaling transformation (Xa) of 55 

nanoparticle compounds are presented in 

Table 1 [24]. Sample components are 

separated, identified, and measured by the 4-

chlorobenzenethiol MPNs stationary phase 

include complementary separations such as 

two-dimensional GC and potential 

utilization within a model system for a 

micro-fabricated GC (GC). The efficiency 

and speed achieved with the dodecanethiol 

MPN stationary phase in the 100 m i.d. 

capillary with a short column length (1.5 m) 

dictates that it be used as the first column. 

All the chromatograms were obtained with 

an injection source and FID temperature of 

250 0C. The inlet pressure was maintained at 

48,000 Pa with a variable split as stated, 

while the auxiliary pressure (column 

pressure) was varied independently as 

dictated by the experimental method being 

employed. The oven temperature was 

constant at 50 ◦C unless otherwise noted. For 

the GC experiments, either a or 15m poly 

(ethyleneglycol) or 4-chlorobenzenethiol 

MPNs column with a 250 m i.d. and 0.2 m 

film thickness (IMMOWax, Agilent 

Technologies, Palo Alto, CA, USA) was 

used as the first column of the GC × GC 

system, and a dodecanethiol MPN column as 

the second column. 

 

2.2 - Molecular modeling and theoretical 
molecular descriptors 

   The derivation of theoretical molecular 

descriptors proceeds from the chemical 

structure of the compounds. To calculate the 

theoretical descriptors, molecular structures 

were constructed with the aid of HyperChem 

version 7.0. The final geometries were 

obtained with the semi-empirical AM1 

method using the HyperChem program. The 

molecular structures were optimized using 

Fletcher- Reeves algorithm until the root 

mean square gradient was 0.01 kcal mol-1. 

Some quantum descriptor such as orbital 

energy of HOMO was calculated using the 

HyperChem software. The resulted 

geometry was transferred into Dragon 

program, to calculate 1497 descriptors, 

which was developed by Todeschini et al 

[25]. To reduce the original pool of the 

descriptors to an appropriate size, the 

objective descriptor reduction was 

performed using various criteria. Reducing 

the pool of descriptors eliminates those 

descriptors which contribute either no 

information or whose information content is 

redundant with other descriptors present in 

the pool.  

 

2.3 - Computer hardware and software 

    All calculations were run on a HP Laptop 

computer with AMD Turion64X2 processor 

with windows XP operating system. The 

optimizations of molecular structures were 

done by the HyperChem 7.0 (AM1 method) 

and descriptors were calculated using the 

Dragon Version 3.0 software’s. MINITAB 

software version 14 was used for the simple 

PLS analysis. Cross validation, GA-PLS, 

GA-KPLS and other calculation were 

performed in the MATLAB (Version 7, 

Mathworks, Inc.) environment. 

 

2.4 - Nonlinear model 

2.5 - Artificial neural network 

An artificial neural network (ANN) with 

a layered structure is a mathematical system 

that stimulates biological neural network, 

consisting of computing units named 

neurons and connections between neurons 

named synapses [25-29]. All the feed-

forward ANN used in this study are three-

layer networks. Each neuron in any layer is 

fully connected with the neurons of a 

succeeding layer. Fig. 1 shows an example 

of the architecture of such ANN. The 

Levenberg–Marquardt back propagation 

algorithm was used for ANN training and the 

linear functions were used as the 

transformation functions in hidden and 

output layers. 
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FIG. 1. Used three layer ANN 

3.1 - Results of the L-M ANN model 

   With the aim of improving the predictive 

performance of the nonlinear QSRR model, 

L-M ANN modeling was performed. The 

networks were generated using the seven 

descriptors appearing in the GA-PLS models 

as their inputs and Xa as their output. A 

three-layer network with a sigmoid transfer 

function was designed for each ANN. Before 

training the networks, the input and output 

values were normalized between -1 and 1. 

The network was then trained using the 

training set by the back propagation strategy 

for optimization of the weights and bias 

values. The procedure for optimization of 

the required parameters is given elsewhere 

[30]. The proper number of nodes in the 

hidden layer was determined by training the 

network with different number of nodes in 

the hidden layer. The root-mean-square error 

(RMSE) value measures how good the 

outputs are in comparison with the target 

values. It should be noted that, for evaluating 

the overfitting, the training of the network 

for the prediction of Xa must stop when the 

RMSE of the prediction set begins to 

increase while RMSE of calibration set 

continues to decrease [31]. Therefore, 

training of the network was stopped when 

overtraining began. All of the above 

mentioned steps were carried out using basic 

back propagation, conjugate gradient and 

Levenberge-Marquardt weight update 

functions. It was realized that the RMSE for 

the training and test sets are minimum when 

four neurons were selected in the hidden 

layer and the learning rate and the 

momentum values were 0.8 and 0.4, 

respectively. Finally, the number of 

iterations was optimized with the optimum 

values for the variables. It was realized that 

after 18 iterations, the RMSE for prediction 

set were minimum. The R2 and RE for 

training and test sets were (0.964, 0.911) and 

(8.70, 13.20), respectively.  The values of 

experimental, calculated, RE and RMSE are 

shown in Table 1.  

Inspection of the results reveals a higher 

R2 and lowers other values parameter for the 

test set compared with their counterparts for 

other models. Plots of predicted Xa versus 

experimental Xa values by L-M ANN for 

training and test sets are shown in Fig. 2. 
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Fig.2. Plot of predicted Xa obtained by L-M ANN against the experimental values. 

Table 1. The data set and the corresponding observed and predicted Xa values by L-M ANN for the training and test set. 

No Name Xa Exp Xa Cal RE RMSE 

Training set     

1 Hexane 0.050 0.054 8.000 0.004 

2 Cyclopentane 0.051 0.058 13.726 0.007 

3 1,1,1-Trichloroethane 0.052 0.057 9.615 0.005 

4 Triethylamine 0.053 0.049 7.547 0.004 

5 Hexyne 0.054 0.052 3.704 0.002 

6 Acetonitrile 0.055 0.065 18.182 0.010 

7 Ethyl acetate 0.056 0.059 5.357 0.003 

8 Heptene 0.058 0.063 8.621 0.005 

9 Tetrahydrofuran 0.059 0.049 16.949 0.010 

10 1,2-Dichloroethane 0.060 0.059 1.667 0.001 

11 Proprionitrile 0.062 0.071 14.516 0.009 

12 Toluene 0.063 0.068 7.937 0.005 

13 2-Butanol 0.064 0.060 6.250 0.004 

14 Ethyl formate 0.067 0.061 8.955 0.006 

15 Benzene 0.068 0.066 2.941 0.002 

16 trans-1,2 Dimethylcyclohexane 0.070 0.079 12.857 0.009 

17 Heptane 0.071 0.077 8.451 0.006 

18 Trichloromethane (chloroform) 0.072 0.075 4.167 0.003 

19 n-Butylamine 0.073 0.085 16.438 0.012 

20 Cyclooctane 0.080 0.076 5.000 0.004 

21 Butyl formate 0.081 0.078 3.704 0.003 

22 1-Bromopentane 0.083 0.082 1.205 0.001 

23 2-Pentanone 0.084 0.093 10.714 0.009 

24 1-Nonene 0.088 0.096 9.091 0.008 

25 Butyl acetate 0.096 0.094 2.083 0.002 

26 Ethylbenzene 0.099 0.106 7.071 0.007 
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27 1-Chlorohexane 0.101 0.114 12.871 0.013 

28 Pyridine 0.102 0.108 5.882 0.006 

29 Chlorobenzene 0.112 0.106 5.357 0.006 

30 2-Pentanol 0.116 0.131 12.931 0.015 

31 2-Hexanone 0.118 0.115 2.542 0.003 

32 1-Nonyne 0.137 0.149 8.759 0.012 

33 1-Butanol 0.141 0.137 2.837 0.004 

34 Decane 0.148 0.159 7.432 0.011 

35 

1,3,5-Trimethyl benzene 

(mesitylene) 0.201 0.162 19.403 0.039 

36 Methyl phenyl ether(anisole) 0.229 0.246 7.424 0.017 

37 Bromobenzene 0.237 0.251 5.907 0.014 

38 1-Nitrobutane 0.239 0.261 9.205 0.022 

39 2-Heptanone 0.322 0.285 11.491 0.037 

40 1-Pentanol 0.365 0.311 14.795 0.054 

41 1-Bromoheptane 0.388 0.416 7.217 0.028 

42 Octanal 0.670 0.785 17.164 0.115 

43 Cyclohexanol 0.944 0.907 3.920 0.037 

44 1-Hexanol 1.000 1.048 4.800 0.048 

Test set     

45 Cyclohexane 0.050 0.060 20.000 0.010 

46 Cycloheptane 0.056 0.047 16.071 0.009 

47 1-Heptyne 0.060 0.053 11.667 0.007 

48 1-Chlorobutane 0.067 0.071 5.970 0.004 

49 Nitroethane 0.074 0.083 12.162 0.009 

50 1,1,2-Trichloroethane 0.093 0.091 2.151 0.002 

51 p-Xylene 0.101 0.117 15.842 0.016 

52 Hexanal 0.131 0.121 7.634 0.010 

53 Bromohexane 0.168 0.144 14.286 0.024 

54 Heptanal 0.259 0.304 17.375 0.045 

55 Cyclohexylamine 0.638 0.497 22.100 0.141 

 

 

which would be compared with the values of 

13.20 and 0.911, respectively, for the L-M 

ANN model. Comparison between these 

values and other statistical parameters 

reveals the superiority of the L-M ANN 

model over other model. The statistical 

parameters reveal the high predictive ability 

of the L-M ANN model. The whole of these 

data clearly displays a significant 

improvement in the QSRR model 

consequent to nonlinear statistical treatment. 

Obviously, there is a close agreement 

between the experimental and predicted Xa 

and the data represent a very low scattering 

around a straight line with respective slope 

and intercept close to one and zero. As can 

be seen in this section, the L-M ANN is more 

reproducible than GA-PLS for modeling the 

GC×GC range-scaling transformation of 

nanoparticle compounds. 

3.2 - Model validation and statistical 

parameters 

The applied internal (leave-group-out 

cross validation (LGO-CV)) and external 

(test set) validation methods were used for 

the predictive power of models. In the leave-
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group-out procedure one compound was 

removed from the data set, the model was 

trained with the remaining compounds and 

used to predict the discarded compound. The 

process was repeated for each compound in 

the data set. The predictive power of the 

models developed on the selected training 

set is estimated on the predicted values of 

test set chemicals. The data set should be 

divided into three new sub-data sets, one for 

training (calibration and prediction), and the 

other one for testing. The calibration set was 

used for model generation. The prediction 

set was applied deal with overfitting of the 

network, whereas test set which its 

molecules have no role in model building 

was used for the evaluation of the predictive 

ability of the models for external set.  

On the other hand, by means of training 

set, the best model is found and then, the 

prediction power of it is checked by test set, 

as an external data set. In this work, 80% of 

the database was used for training set and 

20% for test set, randomly (in each running 

program, from all 55 components, 44 

components are in training set and 11 

components are in test set). 

The result clearly displays a significant 

improvement in the QSRR model 

consequent to non-linear statistical treatment 

and a substantial independence of model 

prediction from the structure of the test 

molecule. In the above analysis, the 

descriptive power of a given model was 

measured to predict the partition of the 

unknown nanoparticle compounds. For the 

constructed models, some general statistical 

parameters were selected to evaluate the 

predictive ability of the models for Xa 

values. In this case, the predicted Xa of each 

sample in prediction step was compared with 

the experimental acidity constant.  Root 

mean square error (RMSE) is a measurement 

of the average difference between predicted 

and experimental values, at the prediction 

step. RMSE can be interpreted as the average 

prediction error, expressed in the same units 

as the original response values. Its small 

value indicates that the model predicts better 

than chance and can be considered 

statistically significant. The RMSE was 

obtained by the following formula: 

 (1) 

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   The other statistical parameter was relative 

error (RE), showing the predictive ability of 

each component, and is calculated as: 
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   The predictive ability was evaluated by the 

square of the correlation coefficient (R2) 

which is based on the prediction error sum of 

squares and was calculated by following 

equation:                                     
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   Where yi is the experimental Xa in the 

sample i, 
iy



 represented the predicted Xa in 

the sample i,
_

y  is the mean of experimental 

Xa in the prediction set and n is the total 

number of samples used in the test set. The 

main aim of the present work was to assess 

the performances of the GA-PLS and L-M 

ANN for modeling the Xa of nanoparticle 

compounds. The procedures of modeling 

including descriptor generation, splitting of 

the data, variable selection and validation 

were the same as those performed for 

modeling of the range-scaling 

transformation of nanoparticle compounds. 

 

Interpretation of descriptors 

    In GC×GC, the entire sample is submitted 

to two online GC separations involving 

different properties of analytes, i.e., the 

volatility related to the carbon atom number 

and the polarity related to the chemical 

group. In the chromatographic retention of 
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compounds in the polar stationary phases is 

related to the induced forces that are very 

important in retention of the compounds. 

The induced forces are related to the dipolar 

moment, which should stimulate dipole-

induced dipole or Debye forces interactions. 

Also, it is related to the dispersion forces. 

The dispersion forces related to steric 

factors, molecular size and branching.  

Constitutional descriptors are the most 

simple and commonly used descriptors, 

reflecting the molecular composition of a 

compound without any information about its 

molecular geometry. The most common 

constitutional descriptors are the number of 

atoms, number of bound, absolute and 

relative numbers of the specific atom type, 

absolute and relative numbers of the single 

and etc. The hydrogen bonding was related 

to the number of Hydrogen atoms (nH). 

Hydrogen-bonding may be divided into an 

electrostatic term and a polarization/charge 

transfer term. A particularly strong type of 

polar interaction occurs in molecules where 

a hydrogen atom is attached to an extremely 

electron-hungry atom such as oxygen, 

nitrogen, or fluorine. Understandably, 

hydrogen bonding plays a significant role in 

retention behavior. 

    The geometrical descriptors are suitable 

for complex-behaved properties, because 

they take into account the 3D-arrangement 

of the atoms without ambiguities and also 

because they do not depend on the molecular 

size. This feature makes it probable that the 

geometrical descriptors appear in the 

resulting model. The SPAN is a size 

descriptor definite as the radius of the 

smallest sphere, centered on the centre of 

mass, completely enclosing all atoms of a 

molecule. 3D-MoRSE (3D-MOlecule 

Representation of Structures based on 

Electron diffraction) descriptors are based 

on the idea of obtaining information from the 

3D atomic coordinates by the transform used 

in electron diffraction studies. These 

descriptors are calculated by summing atom 

weights viewed by a divergent angular 

scattering function. Although functional 

group, atom center fragment, constitutional 

and geometrical descriptors are often 

successful in rationalizing partition of 

nanoparticle on columns, they cannot 

account for conformational changes and they 

do not provide information about electronic 

influence through bonds or across space. For 

that reason, quantum chemical descriptors 

are used in developing QSRR.  

    Charge descriptors were defined in terms 

of atomic charges and used to describe the 

electronic aspects for both of the whole 

molecule and particular regions such as, 

atoms, bonds, and molecular fragments. 

Electrical charges in the molecule are the 

driving force of electrostatic interactions, 

and it is well known that local electron 

densities or charge play a fundamental role 

in many physic-chemical properties and 

receptors-ligand binding affinity. Thus, 

charge based descriptors have been widely 

employed as chemical reactivity indices or 

as measures of weak intermolecular 

interactions. Many quantum chemical 

descriptors are derived from the partial 

charge distribution in a molecule or from the 

electron densities on particular atoms. 

Relative positive charge (RPCG) is the 

quotient between maximum atomic positive 

charge in the molecule and positive atomic 

charge in the molecule. It contains electronic 

information to describe the molecule, and 

therefore it encodes features responsible for 

interaction between molecules and the 

modified reversed stationary phase. 

    Quantum chemical descriptors can give 

great insight into structure and reactivity and 

can be used to establish and compare the 

conformational stability, chemical 

reactivity, and inter-molecular interactions. 

They include thermodynamic properties 

(system energies) and electronic properties 

(HOMO energy). Quantum chemical 

descriptors were defined in terms of atomic 

charges and used to describe electronic 
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aspects both of the whole molecule and of 

particular regions, such atoms, bonds, and 

molecular fragments. Electronic properties 

may play a role in the magnitude in a 

biological activity, along with structural 

features encoded in indexes. HOMO as an 

electron donor represents the ability to 

donate an electron. The HOMO energy plays 

a very important role in the nucleophylic 

behavior and it represents molecular 

reactivity as a nucleophyle. Good 

nucleophyles are those where the electron 

residue is high lying orbital [31].The particle 

size, hydrogen bonding, and electrostatic 

interactions are the likely three factors 

controlling the Xa of the nanoparticles. All 

the descriptors involved in the model may 

account for the structure responsible for the 

Xa of these compounds.  

 

Conclusion 

    In this research, an accurate QSRR model 

for estimating the range-scaling 

transformation (Xa) of nanoparticle 

compounds was developed by employing the 

GA-PLS and L-M ANN techniques. These 

models have good predictive capacity and 

excellent statistical parameters. A 

comparison between these models revealed 

the superiority of the L-M ANN to GA-PLS 

model. It is easy to notice that there was a 

good prospect for the L-M ANN application 

in the QSRR modeling. It can also be used 

successfully to estimate the Xa for new 

compounds or for other compounds whose 

experimental values are unknown. This 

indicates that Xa of nanoparticle compounds 

possesses some nonlinear characteristics.  
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