Document Type: Original Article

Authors

1 Director of Ilam Petrochemical Company.

2 Department of Chemistry, Payame Noor University, P.O. BOX 19395-4697, Tehran, Irann

Abstract

A quantitative structure–retention relation (QSRR) study was conducted on the range-scaling transformation (Xa) of the nanoparticle compounds which obtained by comprehensive two-dimensional gas chromatography (GC×GC) stationary phases consisting of thin films of the gold-centered monolayer protected nanoparticles (MPNs) system. The genetic algorithm was used as descriptor selection and model development method. Modeling of the relationship between the selected molecular descriptors and the retention time was achieved by linear (partial least square; PLS) and nonlinear (Levenberg-Marquardt artificial neural network; L-M ANN) methods. Linear and nonlinear methods resulted in an accurate prediction whereas more accurate results were obtained by L-M ANN model.

Graphical Abstract

Keywords

Main Subjects

1. Brown DB, Wilson MR, MacNee M (2001) Appl. Pharmacol 175: 191-199.

2. Inoue K, Takano H, Yanagisawa R, Sakurai M, Ichinose T, Sadakane K, Yoshikawa T (2001) Respir. Res 6:106-111.

3. Buzorius G, Zelenyuk A, Brechtel F, Imre D (2002) Geophys Res Let 29:1974–1978.

4. Chong-Shu Zhu, Cheng-Chieh Chen, Jun-Ji Cao, Chuen-Jinn Tsai, Ch.C.-K. Chou, Shaw-Chen Liu, Gwo-Dong Roam (2010) Atmos. Environ 44: 2668-2673.

5. Hang Ho Si, Zhen Yu J (2004) J. Chromatogr. A 1059: 121–129.

6. Dallüge J, Rijn M, Beens J, Vreuls RJJ, Brinkman UA (2002) J. Chromatogr. A 965:207-214.

7. Adam F, Bertoncini F, Brodusch N, Durand E, Thiebaut D, Espinat D, Hennion MC (2007) J. Chromatogr. A 1148: 55–64.

8. Hyölyläinen T, Kallio M, Shimmo M, Saamio K, Hartonen K, Riekkola ML (2003) Presentation at the First International Symposium on Two-Dimensional Gas Chromatography, Volendam, The Netherlands.

9. Muhlen C, Alcaraz Zini C, Bastos Caramao E, Marriott Ph (2008) J. Chromatogr. A1200: 34–42.

10. Hamilton JF, Webb PJ, Lewis AC, Hopkins JR, Smith S, Davy P (2004) Atmos. Chem. Phys 4: 1279-1290.

11. Ochiai N, Ieda T, Sasamoto K, Fushimi A, Hasegawa Sh, Tanabe K, Kobayashi Sh (2007) J. Chromatogr. A 1150: 13–20.

12. Leban J, Baierl M, Mies J, Trentinaglia V, Rath S, Kronthaler K, Wolf K (2007) Chem. Lett 17:5858–5862.

13. Gajewicz A, Haranczyk M, Puzyn T (2010) Atmos. Environ 44: 1428-1436

14. Niazi A, Jameh-Bozorghi S, Nori-Shargh D (2008) J. Hazard. Mater. 151: 603-609

15. Noorizadeh H, Esmaeilpoor Sh, Moghadam Z, Nosratolahy Sh (2014) ICC 4: 283-299

16. Woo SH, Jeon ChO, Yun YS, Choi H, Lee ChS, Lee DS (2009) J. Hazard. Mater 161: 538–544

17. Krämer N, Boulesteix AL, Tutz G (2008) Chemom. Intell. Lab. Syst 94: 60–69.

18. Todeschini R, Consonni V, Mauri A, Pavan M (2003) DRAGON-Software for the calculation of molecular descriptors. Version 3.0 for Windows.

19. Goldberg DE (2000) Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley–Longman, Reading, MA, USA.

20. Esmaeilpoor Sh, Shirzadi Z, Noorizadeh H (2014) Iran. Che. Commun., 2: 56-71.

21. Sousa JAD, Hemmer MC, Casteiger J (2002) Anal. Chem. 74, 80-88.

22. Depczynski U, Frost VJ, Molt K (2000) factors in principal component regression. Anal. Chim. Acta 420: 217-227.

23. Wold S, Sjostrom M, Eriksson L (2001) Lab. Syst 58: 109-114.

24. Shahpar M, Esmaeilpoor Sh (2017) Asian J. Green Chem 2: 116-129

25. Rosipal R, Trejo LJ (2001) J. Mach. Learning Res 2: 97-110.

26. Kim K, Lee JM, Lee IB (2005) Chemom. Intell. Lab. Syst 79: 22-30.

27. Acevedo-Martınez J, Escalona-Arranz JC, Villar-Rojas A, Tellez-Palmero F, Perez-Roses R, Gonzalez L, Carrasco-Velar R (2006) J. Chromatogr. A 1102: 238-244.

28. Shahpar M, Esmaeilpoor Sh (2017) Chem. Method., 98-120.

29. Golbraikh A, Tropsha A (2002) Beware of q2. J. Mol. Graphics Modell 20: 269-276.

30. Todeschini R, Consonni V (2000) Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, German