Document Type : Original Article

Authors

Department of Chemistry, Ardabil Branch, Islamic Azad University, Ardabil, Iran

Abstract

With pathogenic microorganisms such as bacteria around our lives, research and finding an effective antibacterial agent is essential. This study prepared and developed a novel nanocomposite based on photocatalytic properties. For grafting of copper (I) oxide nanoparticles in reduced graphene oxide sheets, the simultaneous reduction reaction of graphene oxide and copper (II) acetate monohydrate salt in the presence of sodium borohydride was used to reduce agent. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron (XPS), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), Energy-dispersive X-ray (EDAX), and Raman spectroscopy studied and identified the prepared nanocomposite. These studies showed that 2D rGO is well-decorated by Cu2O nanoparticles. The results of antibacterial tests showed that the synthesized nanocomposite has excellent antibacterial properties, and due to exposure to UV light for 6 h, these properties have been increased. Also, the toxicity of nanocomposite indicated that this agent had biocompatibility properties.

Graphical Abstract

The investigation of antibacterial activity and cell viability of rGO/Cu2O nanocomposite

Keywords

Main Subjects

[1]. Han W., Wu Z., Li Y., Wang Y. Chemical Engineering Journal, 2019, 358:1022
[2]. Zhu Y., Murali S., Cai W., Li X., Suk J. W., Potts J.R., Ruoff R.S. Advanced Materials, 2010, 22:3906
[3]. Luo D., Zhang G., Liu J., Sun X. The Journal of Physical Chemistry C, 2011, 115:11327
[4]. Moghanlou A.O., Sadr M.H., Bezaatpour A., Salimi F., Yosefi M. Molecular Catalysis, 2021, 516:111997
[5]. Chitara B., Krupanidhi S., Rao C. Applied Physics Letters, 2011, 99:113114
[6]. Ji L., Zhou W., Chabot V., Yu A., Xiao X. ACS Applied Materials & Interfaces., 2015, 7:24895
[7]. Bae S., Kim S.J., Shin D., Ahn J.H., Hong B.H. Physica Scripta., 2012, 2012:014024
[8]. Russo P.A., Donato N., Leonardi S.G., Baek S., Conte D.E., Neri G., Pinna N. Angewandte Chemie International Edition, 2012, 51:11053
[9]. Becerril H., Mao J., Liu Z., Stoltenberg R., Bao Z., Chen Y. ACS Nano 2008, 2:463
[10]. Zhang J., Liu J., Peng Q., Wang X., Li Y. Chemistry of Materials, 2006, 18:867
[11]. Zhu H., Wang J., Xu G. Crystal Growth and Design., 2009, 9:633
[12]. Singh S., Gaikwad K.K., Lee M., Lee Y.S. Journal of Food Measurement and Characterization, 2018, 12:588
[13]. Chen M., Li Z., Chen L. Nano Materials Science, 2020, 2:172
[14]. Liu J., Liu K., Feng L., Liu Z., Xu L. Biomaterials Science, 2017, 5:331
[15]. Akhavan O., Ghaderi E. ACS Nano, 2010, 4:5731
[16]. Hu W., Peng C., Luo W., Lv M., Li X., Li D., Huang Q., Fan C. ACS Nano 2010, 4:4317
[17]. Shi L., Chen J., Teng L., Wang L., Zhu G., Liu S., Luo Z., Shi X., Wang Y., Ren L. Small., 2016, 12:4165
[18]. Yu L., Zhang Y., Zhang B., Liu J. Scientific Reports., 2014, 4:1
[19]. Azad R., Bezaatpour A., Amiri M., Eskandari H., Nouhi S., Taffa D.H., Wark M., Boukherroub R., Szunerits S. Applied Organometallic Chemistry, 2019, 33:e5059
[20]. Al-Nafiey A., Kumar A., Kumar M., Addad A., Sieber B., Szunerits S., Boukherroub R., Jain S.L. Journal of Photochemistry and Photobiology A: Chemistry., 2017, 336:198
[21]. Mishra A., Bera G., Mal P., Padmaja G., Sen P., Das P., Chakraborty B., Turpu G. Applied Surface Science, 2019, 488:221
[22]. Zhou X., Zhou M., Ye S., Xu Y., Zhou S., Cai Q., Xie G., Huang L., Zheng L., Li Y. International Biodeterioration & Biodegradation, 2021, 162:105260
[23]. Chen T., Geng Y., Wan H., Xu Y., Zhou Y., Kong X., Wang J., Qi Y., Yao B., Gao Z. Journal of Alloys and Compounds, 2021, 876:160153
[24]. Zhao X., Chen M., Wang H., Xia L., Guo M., Jiang S., Wang Q., Li X., Yang X. Materials Science and Engineering: C, 2020, 116:111221
[25]. Dhandapani P., AlSalhi M.S., Karthick R., Chen F., Devanesan S., Kim W., Rajasekar A., Ahmed M., Aljaafreh M. J. Journal of Hazardous Materials, 2021, 409:124661
[26]. Ansari M.O., Kumar R., Alshahrie A., Abdel-wahab M.S., Sajith V.K., Ansari M.S., Jilani A., Barakat M., Darwesh R. Composites Part B: Engineering, 2019, 175:107092
[27]. Rai B. Solar cells 1988, 25:265
[28]. Adeleye A.S., Oranu E.A., Tao M., Keller A.A. Water Research, 2016, 102:374
[29]. Wan X., Wang J., Zhu L., Tang J. Journal of Materials Chemistry A., 2014, 2:13641
[30]. Jilani A., Othman M.H.D., Ansari M.O., Oves M., Hussain S.Z., Khan I.U., Abdel-wahab M.S. Journal of Materials Science, 2019, 54:6515
[31]. Huang W.C., Lyu L.M., Yang Y.C., Huang M. H. Journal of the American Chemical Society, 2012, 134:1261
[32]. Perelshtein I., Applerot G., Perkas N., Wehrschuetz-Sigl E., Hasmann A., Gübitz G., Gedanken A. Surface and Coatings Technology, 2009, 204:54
[33]. Lucas J.A., Hawkins N.J., Fraaije B.A. Advances in Applied Microbiology, 2015, 90:29
[34]. Minami T., Nishi Y., Miyata T., Nomoto J.I. Applied Physics Express, 2011, 4:062301
[35]. Ghoreishian S.M., Maleknia L., Mirzapour H., Norouzi M. Fibers and Polymers, 2013, 14:201
[36]. Sunada K., Minoshima M., Hashimoto K. Journal of Hazardous Materials, 2012, 235:265
[37]. Chen L., Tang M., Chen C., Chen M., Luo K., Xu J., Zhou D., Wu F. Environmental Science & Technology, 2017, 51:12663
[38]. Large E. Annals of Applied Biology, 1945, 32:319
[39]. Omae I. Applied Organometallic Chemistry, 2003, 17:81
[40]. Xu Z., Ye S., Zhang G., Li W., Gao C., Shen C., Meng Q. Journal of Membrane Science, 2016, 509:83
[41]. Moghanlou A.O., Bezaatpour A., Sadr M.H., Yosefi M., Salimi F. Materials Science in Semiconductor Processing, 2021, 130:105838
[42]. Huang Y., Xie X., Li M., Xu M., Long J. Optics Express., 2021, 29:4453
[43]. Song J., Xu L., Zhou C., Xing R., Dai Q., Liu D., Song H. ACS Applied Materials & Interfaces, 2013, 5:12928
[44]. Singh P., Singh K.R., Singh J., Das S.N., Singh R.P. RSC Advances., 2021, 11:18050
[45]. Kurantowicz N., Sawosz E., Jaworski S., Kutwin M., Strojny B., Wierzbicki M., Szeliga J., Hotowy A., Lipińska L., Koziński R. Nanoscale research letters., 2015, 10:1
[46]. Gurunathan S., Han J.W., Dayem A.A., Eppakayala V., Kim J.H. International journal of nanomedicine., 2012, 7:5901
[47]. Diez-Pascual A.M., Diez-Vicente A.L. ACS applied materials & interfaces., 2016, 8:17902
[48]. Smith A.T., LaChance A.M., Zeng S., Liu B., Sun L. Nano Materials Science., 2019, 1:31
[49]. Kittler S., Greulich C., Diendorf J., Koller M., Epple M. Chemistry of materials., 2010, 22:4548
[50]. Kohanski M.A., Dwyer D.J., Hayete B., Lawrence C.A., Collins J.J. Cell., 2007, 130:797
[51]. Hajipour M.J., Fromm K.M., Ashkarran A.A., de Aberasturi D.J., de Larramendi I.R., Rojo T., Serpooshan V., Parak W.J., Mahmoudi M. Trends in Biotechnology., 2012, 30:499
[52]. Guzman M., Dille J., Godet S. Nanomedicine: Nanotechnology, biology and medicine., 2012, 8:37
[53]. Shahverdi A.R., Fakhimi A., Shahverdi H.R., Minaian S. Nanomedicine: Nanotechnology, Biology and Medicine., 2007, 3:168
[54]. Manke A., Wang L., Rojanasakul Y. BioMed Research International., 2013, 2013. https://doi.org/10.1155/2013/942916.
[55]. Mohanta Y.K., Panda S.K., Bastia A.K., Mohanta T.K. Frontiers in Microbiology., 2017, 8:626
[56]. Bulcke F., Dringen R. Neurochemical Research., 2015, 40:15
[57]. Castiglioni S., Caspani C., Cazzaniga A., Maier J.A. World Journal of Biological Chemistry., 2014, 5:457
[58]. Fahmy B., Cormier S.A. Toxicology In Vitro., 2009, 23:1365
[59]. Singh N., Turner A. Environmental Pollution., 2009, 157:371
[60]. Midander K., Cronholm P., Karlsson H.L., Elihn K., Möller L., Leygraf C., Wallinder I.O. Small., 2009, 5:389
[61]. Karlsson H.L., Cronholm P., Hedberg Y., Tornberg M., De Battice L., Svedhem S., Wallinder I.O. Toxicology., 2013, 313:59
[62]. VanWinkle B.A., de Mesy Bentley K.L., Malecki J.M., Gunter K.K., Evans I.M., Elder A., Finkelstein J.N., Oberdörster G., Gunter T.E. Nanotoxicology., 2009, 3:307
[63]. Karlsson H.L., Cronholm P., Gustafsson J., Moller L. Chemical Research in Toxicology., 2008, 21:1726
[64]. Minocha S., Mumper R.J. Small., 2012, 8:3289