Document Type : Original Article


1 Department of Physics, Tehran North Branch, Islamic Azad University, Tehran, Iran

2 Department of Engineering, Shahriar Branch, Islamic Azad University, Shahriar, Iran


This study doped alumina with iron impurities by co-precipitation and sol-gel methods compared with pure alumina. Precursors of aluminum and iron metal salts employ the surfactant and new stabilizers used for synthesizing samples. Several analysewere performed on different properties of the synthesized samples and the effect of iron impurities on them. The presence of different phases was confirmed in the XRD spectrum of nanoparticles made by co-precipitate method. As the percentage of impurities increases, the unstable and intermediate phases decrease and eventually tend to the stable phase of α-alumina, the resulting hexagonal structure is obtained. The FESEM spectra of samples synthesized by both methods showed that a decrease in particle size occurs with an increase in the percentage of impurities. TEM analysis of nanoparticles with 5% impurity shows the shape of the particles as quasi-spherical, about agglomerate. It is the reason for removing the stabilizing agent in the high-temperature heating process. Also, increasing the intermolecular gravitation force, the particles stick together in a lump. UV-DSR analysis showed that with increasing impurity percentage, the energy band gap decreases and the absorption wavelength  increases. In samples fabricated in both methods, the value of  obtained is close to each other. The VSM spectrum showed that ferromagnetic properties occur when iron enters alumina sites.

Graphical Abstract

Investigation and synthesis of Fe doped Al2O3 nanoparticles by Co-precipitation and sol gel methods


Main Subjects

[1]. Dastpak M., Farahmandjou M., Firoozabadi, T.P. J. Supercond. Nov. Magn., 2016, 29:2925
[2]. Farahmandjou M., Soflaee F. Chin. J. Phys., 2015, 53:080801
[3]. Jurablu S., Farahmandjou M., Firoozabadi T.P. J. Theoretical. Appl. Phys., 2015, 9:261
[4]. Farahmandjou M., Soflaee F. Phys.Chem. Res., 2015, 3:193
[5]. Zarinkamar M., Farahmandjou M., Firoozabadi T.P. J.Nanostruct., 2016, 6:116
[6]. Farahmandjou M. J. Phys.Res., 2016, 16:1
[7]. Farahmandjou M., Ramazani M. Phys. Chem.Res., 2015, 3:293
[8]. Shadrokh S., Farahmandjou M., Firozabadi T.P. Phys. Chem. Res., 2016, 4:153
[9]. Farahmandjou M., Honarbakhsha S., Behrouziniab S. Phys.Chem. Res., 2016, 4:655
[10]. Agrawal D. Mater Rese Innov., 2010, 14:3
[11]. Hassan S., Gupta M. Mater Sci Eng A., 2005, 39:163
[12]. Jeyasimman D., Sivaprasad K., Sivasankaran S., Ponalagusamy R., Narayanasamy R., Iyer V. Adv. Powder Technol., 2015, 26:139
[13]. Li J., Kwong F.L., Shi R.X., Ng D.H., Yin Y.S., Mater Sci Eng A., 2009, 52:50
[14]. Mahapatra A., Mishra B.G., Hota G. J Hazard Mater., 2013, 258:116
[15]. Kim H.N., Lee S.K. Am. Mineral, 2013, 98:1198
[16]. Wang J.A., Bokhimi X., Morales A., Novaro O.,Lo´pez T., Go´mez R. J. Phys. Chem. B., 1999, 103:299
[17]. Farahmandjou M., Honarbakhsh S., Behrouzinia S. J. Supercond. Nov. Magn., 2018, 31:4147
[18]. Farahmandjou M., Khalili P. Aust. J. Basic Appl. Sci., 2013, 7:462
[19]. Jurablu S., Farahmandjou M., Firoozabadi T.P. J. Sci. Islamic Republic Iran., 2015, 26:281
[20]. Farahmandjou M., Dastpak M. Phys. Chem. Res., 2018, 6:713
[21]. Sohlberg K., Pennycook S.J., Pantelides S. T. J. Am. Chem. Soc., 1999, 121:10999
[22]. Celik Y., Suvacι E., Flahaut E., Weibel A., Peigney A. J. Am. Ceram. Soc., 2010, 93:3732
[23]. Yang Y., Wei H., Zhang L., Kisslinger K., Melcher C.L., Wu Y. J. Lumin., 2015, 168:297 [24]. Mokoena T.P., Linganiso E.C., Swart H.C., Kumar V., Ntwaeaborwa O.M. Ceram. Int., 2017, 43:174
[25]. Kumar S., Prakash R., Kumar V., Functional Materials Letters, 2015, 8:1550061
[26]. Rani G., Sahare P.D. Adv. Powder Technol., 2014, 25:767
[27]. Zhu Z., Liu D., Liu H., Wang X., Fu L., Wang D. Ceram. Int., 2012, 38:4137
[28]. Monteiro T., Boemare C., Soares M.J., Alves E., Marques C., McHargue C., Ononye L.C. Allard L.F. Nucl. Instr. Meth. Phys. Res. B, 2002, 191:638
[29]. Alhaj Sakur A., Okdeh M., Al Fare B. Mod Chem appl., 2016, 4:1
[30]. Heiba Z.K., Mohamed M.B., Wahba A.M., Imam N.G. J. Electron. Mater., 2018, 47:711
[31]. Khodadadi A., Farahmandjou M., Yaghoubi M., Amani A.R. Int. J. Appl. Ceram. Technol., 2019, 16:718 
[32]. Dmitry Smovzh V., Salavat Sakhapov Z., Alexey Zaikovskii V., Sergey Novopashin A. Ceram. Int., 2015, 41:8814
[33]. Farahmandjou M. Revista Mexicana de Fisica, 2013, 59:205
[34]. Mora´n-Pineda M., Castillo S., Lo´pez T., Go´mez R., Cordero-Borboa A.E., Novaro O., Appl. Catal. B, 1999, 21:79
[35]. Farahmandjou M., Golabiyan N. Nano Micro Scales, 2015, 3:100
[36]. Farahmandjou M., Golabiyan N. Ceramic Proc. Res., 2015, 16:237
[37]. Janitabar Darzi S., Mohseni N. Advanced Journal of Chemistry-Section A, 2019, 2:165
[38]. Janitabar Darzi S., Bastami H. Advanced Journal of Chemistry-Section A, 2021, DOI: 10.22034/ajca.2022.305643.1281
[39]. Scherrer P. Gottingen. Mathematisch Physikalische Klasse.,1918, 2:98
[40]. Hafshejani L.D., S., Koponen H., Riikonen J.,Karhunen T., Tapper U., Lehto V.P., Moazed  H., Naseri A., Hooshmand A., Jokiniemi J., Bhatnagar A.,Lähde A. Powder Technol., 2016, 298:42
[41]. Marami M.B., Farahmandjou M. J. Electron. Mater., 2019, 48:4740
[42]. Behrouzinia S., Salehinia D., Khorasani K., Farahmandjou M. Opt. Commun., 2019, 436:143 [43]. Farahmandjou M., Motaghi S. Opt. Commun., 2019, 441:1
[44]. Khodadadi A., Farahmandjou M., Yaghoubi M. Mater. Res. Express., 2019, 6:025029
[45]. Farahmandjou M., Salehizadeh S.A. Glas. Phys. Chem, 2013, 39:473
[46]. Khatoon S., Wani I.A., Ahmed J., Magdaleno T., Al-Hartomy O.A., Ahmad T. Mater. Chem. Phys., 2013, 138:519
[47]. Kumar S., Kumar R., Singh D.P. Appl. Surf. Sci., 2009, 255:8014
[48]. Nomura K., Kinoshita R., Sakamoto I., Okabayashi J., Yamada Y. Hyperfine Interact., 2012, 208:65
[49]. Maldonado C.S., Rosa J.R., Lucio-Ortiz C.J., Hernández-Ramírez A., Barraza F.C., Valente J.S. Materials., 2014, 7:2062