Document Type : Original Article

Authors

1 Department of Physics and Astronomy, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria

2 National Center for Physics, Quaid-i-Azam University, Islamabad, 44000, Pakistan

3 NPU-NCP Joint International Research Center on Advanced Nanomaterials and Defects Engineering, Northwestern Polytechnical University, Xi'an, 710072, China

4 Department of Agricultural and Bioresources Engineering, University of Nigeria, Nsukka, Enugu State, Nigeria

5 Nanosciences African Network (NANOAFNET) iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, P.O. Box 722, Somerset West, Western Cape Province, South Africa

6 UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, P.O. Box 392, Pretoria, South Africa

7 Africa Centre of Excellence for Sustainable Power and Energy Development (ACE-SPED), University of Nigeria, Nsukka, Enugu State, Nigeria

Abstract

Cobalt phosphate (Co3(PO4)2) nanoparticles of varying precursor concentrations were extracted successfully by co-precipitation method and fabricated on the stainless and glass substrates using drop-casting method. The structural and morphological properties of cobalt phosphate (Co3(PO4)2) nanoparticles were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM) techniques. Elemental composition of cobalt phosphate nanoparticles was evaluated using energy dispersive X-ray spectroscopy (EDS). The optical properties of cobalt phosphate (Co3(PO4)2) nanoparticles were characterized using UV visible spectrophotometer. The electrochemical analyses were assessed using three-reference electrode potentiostat. XRD characterization of the cobalt phosphate nanoparticles revealed monoclinic structure with the major prominent peak at (211) plane, whereas SEM image of the particles showed anisotropic nano rectangular structure and irregular shape. The optical studies demonstrated good absorbance and transmittance within the visible region with direct band gap value in the range of 2.522 eV to 2.547 eV. The electrochemical studies revealed maximum specific capacitance of 1889.31 Fg-1, energy and power density at 9.64 Whkg-1 and 1260.13 Wkg-1, respectively for the synthesized nanoparticles.

Graphical Abstract

Investigating the properties of cobalt phosphate nanoparticles synthesized by co-precipitation method

Keywords

Main Subjects

[1]. Radhamani A. V., Ramachandra Rao M. S. Applied Surface Science, 2017, 403:601
[2]. Oyedepo S.O. Energy, Sustainability and Society, 2012:15
[3]. Deng J., Kang L., Bai G., Li Y., Li P., Liu X., Yang Y., Gaoa F., Liang W. Electrochimica Acta, 2014, 132:127
[4]. Nwanya A.C., Obi D., Ozoemena K.I., Osuji R.U., Awada C., Ruediger A., Maaza, M., Rosei, F., Ezema, F. I. Electrochimica Acta, 2016, 198:220
[5]. Wang X., Ma L., Sun J. International Journal of Energy Research, 2019, 43:9025
[6]. Azman N.H.N., Mamat @ Mat Nazir M.S., Ngee L.H., Sulaiman Y. International Journal of Energy Research, 2018, 42:2104
[7]. Rafique M., Sadaf I., Nabi G., Bilal Tahir M., Khan M.I. International Journal of Energy Research, 2019, 43:2361
[8]. Obodo R.M., Nwanya A.C., Iroegbu C., Ahmad I., Ekwealor A.B.C., Osuji R.U., Maaza M., Ezema F.I. International Journal of Energy Research, 2020, 44:6792
[9]. Linghao S.U., Liangyu Gong X.W., Archives of Thermodynamics, 2012, 33:23
[10]. Mao S., Wen Z., Kim H., Lu G., Hurley P., Chen J. ACS Nano, 2012, 6:7505
[11]. Nkelea A.C., Nwanya A.C., Nwankwoa N.U., Ekwealora A.B.C., Osujia R.U., Bucher R., Maaza M., Ezema F.I. Materials Research Express, 2019, 6:096439
[12]. Wang D., Kou R., Choi D., Yang Z., Nie Z., Li J., Saraf L. V., Hu D., Zhang J., Graff G. L., Liu J.,  Pope M.A., Aksay I.A. ACS Nano, 2010, 4:1587
[13]. Deb S.K. Solar Energy Materials and Solar Cells, 2008, 92:245
[14]. Huang Q., Zeng D., Li H., Xie C. Nanoscale, 2012, 4:5651
[15]. Fiori G., Bonaccorso F., Iannaccone G., Palacios T., Neumaier D., Seabaugh A., Banerjee S.K., Colombo L. Nature Nanotechnology, 2014, 9:768
[16]. Wang J., Tsuzuki T., Tang B., Hou X., Sun L., Wang X. ACS Applied Materials and Interfaces, 2012, 4:3084
[17]. Thomas S., Rajan A.C., Rezapour M.R., Kim K.S. Journal of Physical Chemistry C., 2014, 118:10855
[18]. Koppens F.H.L., Mueller T., Avouris P., Ferrari A.C., Vitiello M.S., Polini M. Nature Nanotechnology, 2014, 9:780
[19]. Li B., Gu P., Feng Y., Zhang G., Huang K., Xue H., Pang H. Advanced Functional Materials., 2017, 27:1605784
[20]. Hsu S.H., Li C.T., Chien H.T., Salunkhe R.R., Suzuki N., Yamauchi Y., Ho K.C., Wu K.C.W. Scientific Reports, 2014, 4:1
[21]. Ighodalo K.O., Ezealigo B.N., Agbogu A., Nwanya A.C., Obi D., Mammah S.L., Botha S., Bucher R., Maaza M., Ezema F.I. Materials Science in Semiconductor Processing, 2019, 101:16
[22]. Yang Y., Han C., Jiang B., Iocozzia J., He C., Shi D., Jiang T., Lin Z. Materials Science and Engineering R: Reports., 2016, 102:1
[23]. Theerthagiri J., Thiagarajan K., Senthilkumar B., Khan Z., Senthil R.A., Arunachalam P., Madhavan J., Ashokkumar M. Chemistry Select, 2017, 2:201
[24]. Tang P., Han L., Zhang L., Wang S., Feng W., Xu G., Zhang L. Chem Electro Chem., 2015, 2:949
[25]. Ji J., Zhang L.L., Ji H., Li Y., Zhao X., Bai X., Fan X., Zhang F., Ruoff R.S. ACS Nano, 2013, 7:6237
[26]. Obodo R.M., Nwanya A.C., Ekwealor A.B.C., Ahmad I., Zhao T., Osuji R.U., MaazaM., Ezema F.I. Surfaces and Interfaces, 2019, 16:114
[27]. Obodo R.M., Onah E.O., Nsude H.E., Agbogu A., Nwanya A.C., Ahmad I., Zhao T., Ejikeme P.M., Maaza M., Ezema F.I. Electroanalysis, 2020, 32:2786
[28]. Obodo R.M., Nwanya A.C., Arshad M., Iroegbu C., Ahmad I., Osuji R.U., Maaza M., Ezema F.I. International Journal of Energy Research., 2020, 44:3192
[29]. Barreca D., Massignan C., Inorganica C., Analitica M., Loredan V., Padova I., Barreca D., Massignan C., Daolio S., Fabrizio M., Piccirillo C., Armelao L.,  TondelloE. Chem. Mater. 2001, 13:588
[30]. Badsar M., Edrissi M. Materials Research Bulletin, 2010, 45:1080
[31]. Xuan L.L., Liu X.J., Wang X. Frontiers in Materials, 2019, 6:1
[32]. Zhou T.,  Du Y., Yin S., Tian X., Yang H., Wang X.,  Liu B., Zheng H., Qiao S.,  Xu R. Energy and Environmental Science., 2016, 9:2563
[33]. Badsar M., Edrissi M. Materials Research Bulletin, 2010, 9:1080
[35]. Zhou G., Wang W., Gu G., Li Y., Liu Y. International Journal of Chemistry, 2011, 4:127
[36]. Eslamian M., Soltani-Kordshuli F. Journal of Coatings Technology & Research, 2018, 15:271
[37]. Zhou G., Wang W., Gu G., Li Y., Liu Y. International Journal of Chemistry, 2011, 3:127
[38]. Duraisamy N., Arshid N., Kandiah K., Iqbal J., Arunachalam P. Journal of Materials Science: Materials in Electronics, 2019, 30: 7435
[39]. Nkele A.C., Chime U.K., Asogwa L., Nwanya A.C., Nwankwo U., Ukoba K., Jen T.C., Maaza M., Ezema F.I. Inorganic Chemistry Communications., 2020, 112:107705
[40]. Nkele A.C., Nwanya A.C., Nwankwo N.U., Osuji R.U., Ekwealor A.B.C., Ejikeme P.M., Maaza M., Ezema F.I. Adv Nat Sci: Nanosci Nanotechnol, 2019, 10:045009
[41]. Sajid S., Elseman A.M., Huang H., Ji J., Dou S., Jiang H., Liu CX., Wei D., Cui P., Li M. Nano Energy, 2018, 51:408
[42]. Nkele A.C., Chime U.K., Nwanya A.C., Obi D., Osuji R.U., Bucher R. Ejikeme P.M., Maaza M., Ezema F.I. Vacuum, 2019, 161:306
[43]. Nkele A.C., Chime U., Ezealigo B., Nwanya A., Agbogu Ada N.C., Ekwealor A.B.C., Osuji R.U., Ejikeme P.M., Maaza M., Ezema F.I. Journal of Materials Research and Technology., 2020, 9:9049
[44]. Kim T., Tiwari A.P., Chhetri K., Ojha G.P., Kim H., Chae S.H., Dahal B., Lee B.M., Mukhiya T., Kim H.Y. Nanoscale Advances., 2020, 2:4918
[45]. Iqbal M.Z., Khan J., Afzal A.M., Aftab S. Electrochimica Acta., 2021, 384:138358
[46]. Maher M., Hassan S., Shoueir K., Yousif B., Abo-Elsoud M.E.A. Journal of Materials Research and Technology, 2021, 11:1232
[47]. Iqbal M.Z., Khan J., Siddique S., Afzal A.M., Aftab S. International Journal of Hydrogen Energy, 2021, 46:15807