Document Type : Original Article

Authors

R.C. Patel Institute of Pharmaceutical Education and Research Shirpur, Dist. Dhule, India

Abstract

Curcumin (CRM) is a phytochemical that has potent antiproliferative effects against a variety of tumors in vitro. Curcumin, however, is limited in its clinical utility due to its poor solubility. Hydrothermal synthesis is a novel method that yields nanoparticles with narrow particle size distribution and high purity without further treatment the use of toxic solvents. Nanosized CRM with the average particle size of 186.2 nm was prepared by a simple hydrothermal process to enhance the aqueous solubility of CRM. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis identifies that the particles are highly crystalline and revealed no polymorphic changes in CRM on hydrothermal treatment and scanning electron microscopy (SEM) identified that the CRM nano agglomerates. Zeta potential (ZP) results demonstrated the relative stability of nanosized CRM after hydrothermal treatment. Nanosized CRM particles exhibited greater solubility and hence dissolution rate as compared to the original drug. The present study offers a simple process that lacks the use of organic solvent, therefore, is green, and had good yield being a single-step process, to synthesize and to design nanosized CRM for better drug delivery applications.

Graphical Abstract

Synthesis and characterization of curcumin nanoparticles by hydrothermal method

Keywords

Main Subjects

[1]          . Charitidis C.A., Georgiou P., Koklioti M.A., Trompeta A.F., Markakis V. Manuf Rev., 2014, 1
[2]          . Darr J.A., Poliakoff M. Chem Rev., 1999, 99:495
[3]. Gribov E.N., Parkhomchuk E.V., Krivobokov I.M., Darr J.A., Okunev A.G. J Memb Sci., 2007, 297:1
[4]          . Gong K., Darr J.A., Rehman I.U. Int J Pharm., 2006, 315:93
[5]. Gan Y.X., Jayatissa A.H., Yu Z., Chen X., Li M. J Nanomater., 2020, 2020:3 pages
[6]. Ismail A.A., El-Midany A., Abdel-Aal E.A., El-Shall H. Mater Lett., 2005, 59:1924
[7]. Franger S., Le Cras F., Bourbon C., Rouault H. Electrochem Solid-State Lett., 2002, 5:231
[8]. Abdel-Aal E.A., Malekzadeh S.M., Rashad M.M., El-Midany A.A., El-Shall H. Powder Technol., 2007, 171:63
[9]. Abdel-Aal E.A., El-Midany A.A., El-Shall H. Mater Chem Phys., 2008, 112:202
[10]. Shah V.P., Amidon G.L., Lennernas H., Shah V.P., Crison J.R. AAPS J., 2014, 16:894
[11]. Gu Z., Wu A., Li L., Xu Z.P. Pharmaceutics, 2014, 6:235
[12]. Li C, Ge X, Li G, Gao Q, Ding R. Adv Powder Technol., 2014, 25:1661
[13]. Abraham H.A., Patel N.R., Torchilin V.P.
Int. J. Pharm. 2014 ,464:178
[14]. Keshari P., Sonar Y., Mahajan H. Mater Technol., 2019, 34:423
[15]. Mahajan H.S., Gattani S.G. Chem Pharm Bull., 2009, 57:388
[16]. Mahajan H.S., Gattani S.G., Pharm Dev Technol., 2009, 14:226
[17]. Gokhale J.P., Mahajan H.S., Surana S.S. Biomed Pharmacother., 2019, 112:108622
[18]. Patil P.H., Wankhede P.R., Mahajan H.S., Zawar L.R. Recent Pat Drug Deliv Formul., 2018, 12:53
[19]. Riman R.E., Suchanek W.L., Byrappa K., Chen C.W., Shuk P., Oakes C.S. Solid State Ionics., 2002, 151:393
[20]. Rezaei-aghdam E., Shamel A., Khodadadi-moghaddam M., Rajaei E., Mohajeri S. Asian Journal of Nanoscience., 2021, 4:188