Document Type : Original Article

Authors

Department of Materials & Metallurgy, Shahid Bahonar University of Kerman, Kerman, Iran

Abstract

Carbon nanotubes (CNTs) have specific physical properties that make them one of the ideal nano-materials for electronics, magnetic, and optical applications. Produced CNTs via mechanothermal method have a springy and coil-like structure, affecting their physical characteristics and distinguishes them from other carbon nanotubes. In this research study, the optical and magnetic properties of fabricated carbon nanotubes by mechanothermal method were investigated. For this purpose, carbon nanotubes were synthesized by heat treatment of ball-milled graphite powders at 1400 ˚C in the atmosphere of argon. The quality and structure of milled-graphite and the CNTs were investigated using X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and Raman spectroscopy. Then, the optical and magnetic properties of the fabricated CNTs were assessed by UV-VIS spectrometer and vibrating-sample magnetometer (VSM), respectively. The results of the absorption spectra revealed that the products had not any absorption peak at the visible regime. Furthermore, magnetization curves indicate that coercivity (Hci), magnetization (Ms), and retentivity (Mr) of the CNTs were found to be 84.183 G, 20.531, and 0.73511 emu/g, respectively.

Graphical Abstract

Investigation on physical properties of carbon nanotubes prepared by mechanothermal method

Keywords

Main Subjects

[1]. Moradnia F., Fardood S.T., Ramazani A., Min B.K., Joo S.W., Varma R.S. Journal of Cleaner Production, 2021, 288:125632
[2]. Taghavi Fardood S., Moradnia F., Ghalaichi A.H., Danesh Pajouh S., Heidari M. Nanochemistry Research, 2020, 5:69
[3]. Fardood S.T., Forootan R., Moradnia F., Afshari Z., Ramazani A. Materials Research Express, 2020, 7:015086
[4]. Ajormal, F., Moradnia F., Taghavi Fardood S., Ramazani A. Journal of Chemical Reviews, 2020, 2:90
[5]. Boyrazlı M., Güler S.H. Journal of Molecular Structure, 2020, 1199:126976
[6]. Mirahmadi Babaheydari R., Mirabootalebi S.O., Akbari Fakhrabadi G.H. Iranian Journal of Materials Science & Engineering, 2021, 18:1
[7]. Mirabootalebi S.O. Fakhrabadi G.H.A. Int. J. Bio-Inorg. Hybr. Nanomater, 2017, 6:49
[8]. Manafi S., Amin M., Rahimipour M., Salahi E., Kazemzadeh A. Advances in Applied Ceramics, 2010, 109:25
[9]. Chen Y., Fitz Gerald J., Chadderton L.T., Chaffron L. Applied Physics Letters, 1999, 74:2782
[10]. Manafi S., Rahimipour M.R., Mobasherpour I., SoltanmoradiA. Journal of Nanomaterials, 2012, 2012:15
[11]. Chen Y., Conway M., Fitzgerald J. Applied Physics A, 2003, 76:633
[12]. Manafi S., Rahimipour M., Soltanmoradi A. Materials Science-Poland, 2012, 30:226
[13]. Chen Y., Fitz Gerald J., Chadderton L., Chaffron L. Journal of Metastable and Nanocrystalline Materials, 1999, 2-6:375
[14]. Smeulders D., Milev A., Kannangara G.K., Wilson M. Journal of Materials Science, 2005, 40:655
[15]. Chen Y., Li C.P., Chen H., Chen Y., Science and Technology of Advanced Materials, 2006, 7:839
[16]. Cui K., Maruyama S. Progress in Energy and Combustion Science, 2019, 70:1
[17]. Yan C., Lu H., Li Z., Li J., Tang Y., Yu B. 16th China International Forum on Solid State Lighting & 2019 International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS). 2019. IEEE
[18]. Wang S., Lin Q., Chen J., Gao H., Fu D., Shen S. Carbon, 2017, 112:53
[19]. Guldi D.M., Martín N. Carbon nanotubes and Related Structures: Synthesis, Characterization, Functionalization, and Applications. 2010: John Wiley & Sons
[20]. Mahajan D. Asian Journal of Applied Science and Technology, 2017, 1:15
[21]. Ezzatzadeh E. Asian Journal  of  Nanoscience  and  Materials, 2021, 4:125
[22]. Thapa A., Neupane S., Guo R., Jungjohann K.L., Pete D., Li W. Diamond and Related Materials, 2018, 90:144
[23]. Karthikeyan K., Angulakshmi V., Karthikeyan S., Jothivenkatachalam K., Kumar P.A. Bulletin of the Chemical Society of Ethiopia, 2017, 31:233
[24]. Güler Ö., Evin E. Fullerenes, Nanotubes and Carbon Nanostructures, 2015, 23:463
[25]. Mirabootalebi S. Advanced Composites and Hybrid Materials, 2020, 3:336
[26]. Evin E., Güler Ö., Aksoy M., Güler S.H. Bulletin of Materials Science, 2015, 38:857
[27]. Connan H.G., Reedy B.J., Marshall C.P., and Wilson M.A. Energy & Fuels, 2004, 18:1607
[28]. Rosas G., Esparza R., Liu H., Ascencio J., Pérez R. Materials Letters, 2007 61:860.
[29]. Moradnia F., Fardood S.T., Ramazani A., Osali S., Abdolmaleki I. Micro & Nano Letters, 2020, 15:674
[30]. Taghavi Fardood S., Moradnia F., Moradi S., Forootan R., Yekke Zare F., and Heidari M. Nanochemistry Research, 2019, 4:140
[31]. Lutterotti L. Acta Crystallogr. A, 2000, 56:s54
[32]. Manafi S., Amin M., Rahimipour M., Salahi E., and Kazemzadeh A. New Carbon Materials, 2009, 24:39
[33]. Welham N. Williams J. Carbon, 1998, 36:1309
[34]. Suryanarayana C. Progress in Materials Science, 2001, 46:1
[35]. Huang Z., Calka A., Liu H. Journal of Materials Science, 2007, 42:5437
[36]. Chen X., Yang H., Wu G., Wang M., Deng F., Zhang X., Peng J., and Li W. Journal of Crystal Growth, 2000, 218:57
[37]. Li J., Wang L., Bai G., Jiang W. Scripta Materialia, 2006, 54:93
[38]. Huang J., Yasuda H., Mori H. Chemical Physics Letters, 1999, 303:130
[39]. Li J., Peng Q., Bai G., Jiang W. Carbon, 2005, 13:2830
[40]. Manafi S., Rahimipour M., Pajuhanfar Y. Ceramics International, 2011, 37:2803
[41]. Lehman J.H., Terrones M., Mansfield E., Hurst K.E., Meunier V. Carbon, 2011, 49:2581
[42]. Purohit R., Purohit K., Rana S., Rana R., Patel V. Procedia Materials Science, 2014, 6:716
[43]. Kumar M. Ando Y. Journal of Nanoscience and Nanotechnology, 2010, 10:3739
[44]. Chen Y., Conway M., Fitzgerald J. Applied Physics A: Materials Science & Processing, 2003, 76:633
[45]. Costa S., Borowiak-Palen E., Kruszynska M., Bachmatiuk A., Kalenczuk R. Materials Science-Poland, 2008, 26:433
[46]. Benoit J., Buisson J., Chauvet O., Godon C., Lefrant S. Physical Review B, 2002, 66:073417
[47]. Zdrojek M., Gebicki W., Jastrzebski C., Melin T., Huczko A. Solid State Phenomena. 2004, 99:265
[48]. Lefrant S. Current Applied Physics, 2002, 2:479
[49]. Antunes E., Lobo A., Corat E., Trava-Airoldi V. Carbon, 2007, 45:913
[50]. DiLeo R.A., Landi B.J., Raffaelle R.P. Journal of Applied Physics, 2007, 101:064307
[51]. Chakrapani N., Curran S., Wei B., Ajayan P.M., Carrillo A., Kane R.S. Journal of Materials Research, 2003, 18:2515
[52]. Chen P., Wu X., Sun X., Lin J., Ji W., Tan K. Physical Review Letters, 1999, 82:2548
[53]. Chiodarelli N., Richard O., Bender H., Heyns M., De Gendt S., Groeseneken G., Vereecken P.M. Carbon, 2012, 50:1748
[54]. Kiang C.-H., Endo M., Ajayan P., Dresselhaus G., Dresselhaus M. Physical Review Letters, 1998, 18:1869
[55]. Onyestyák G., Valyon J., Hernádi K., Kiricsi I., Rees L. Carbon, 2003, 41:1241
[56]. Singh D.K., Iyer P., Giri P. Diamond and Related Materials, 2010, 19:1281
[57]. Tasaki S., Maekawa K., Yamabe T. Physical Review B, 1998, 57:9301
[58]. Jeong M.S., Byeon C.C., Cha O.H., Jeong H., Han J.H., Choi Y.C., An K.H., Oh K.H., Kim K.K., Lee Y.H. Nano, 2008, 3:101
[59]. Johan M.R. Moh L.S. Carbon, 2013, 8:1047
[60]. Cherukuri T.K., Tsyboulski D.A., Weisman R.B. ACS Nano, 2012, 6:843
[61]. Johan M.R. Moh L.S. Int. J. Electrochem. Sci, 2013, 8:1047
[62]. Fathi Z., Nejad R.-A.K., Mahmoodzadeh H., Satari T.N. Journal of Plant Protection Research, 2017, 57:228
[63]. Shende R.C. Ramaprabhu S. Solar Energy Materials and Solar Cells, 2016, 157:117
[64]. Zawadzka A., Płóciennik P., Korcala A., Szroeder P. Optical Materials, 2019, 96:109295
[65]. Farahmandjou M., Khalili P. Asian Journalof Green Chemistry, 2021, 5:219
[66]. Liu J.P., Fullerton E., Gutfleisch O., Sellmyer D.J., Nanoscale Magnetic Materials and Applications, 2009; p XXIV, 719
[67]. Dekker C. Nature Electronics, 2018, 1:518
[68]. Jeong Y.J., Bae J., Nam S., Lim S., Jang J., Kim S.H., Park C.E. Organic Electronics, 2016, 39:272