Document Type : Original Article

Authors

1 Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 College of Medicine, National Taiwan University, 10048, Taipei, Taiwan

3 Stem Cell Technology Research Center, Tehran, Iran

4 Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran

Abstract

Graphene/hydroxyapatite nanocomposites (NCs) is attracted more attention in bone tissue engineering due to their osteoconductive properties. Adding different ionic substitutions to graphene/hydroxyapatite NCs may increase its osteogenic properties. In this research study, bismuth doped hydroxyapatite nano-rods (Bi-nHA) were decorated on the reduced graphene oxide (rGO) sheets. The formation and structure of the nanocomposites (rGO/Bi-nHA) was characterized using the transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Inductively-coupled plasma optical emission spectroscopy (ICP-OES), and zeta potential. The characterization results revealed that the graphene is reduced and the nanocomposites are multilayer. Zeta potential of nanocomposite sheets is seen to be-23.1 mV. The cytotoxicity and osteoconductive effects of rGO/Bi-nHA nanocomposite on Human adipose derived stem cells (ADSCs) were examined using the MTT and calcium deposition assay. The results demonstrated that, the nanocomposites have no toxicity. Calcium deposition was observed at all concentrations and the highest calcium deposition is at 10 µg/mL. Based on the results of the synthesized nanocomposites, this material is suitable to be utilized in scaffold construction for bone tissue engineering.

Graphical Abstract

Reduced graphene oxide/nanohydroxy Apatite-Bismuth nanocomposites for osteogenic differentiation of human mesenchymal stem cells

Keywords

Main Subjects

[1]. Ullah N., Ansir R., Muhammad W., Jabeen S. Asian Journal of Green Chemistry, 2020,4:340

[2]. Fardood ST., Forootan R., Moradnia F., Afshari Z., Ramazani A. Materials Research Express, 2020, 7:015086

[3]. Taghavi Fardood S., Moradnia F., Ramazani A. Nanochemistry Research, 2019, 4:86

[4]. Moradnia F., Fardood S.T., Ramazani A., Gupta VK. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 392:112433

[5]. Fardood S.T., Moradnia F., Ramazani A. Micro & Nano Letters, 2019, 14:986

[6]. Taghavi Fardood S., Ramazani A., Azimzadeh Asiabi P., Bigdeli Fard Y., Ebadzadeha B. Asian Journal of Green Chemistry, 2017, 1:34

[7]. Singh P., Banik R.M. Plant Science Today, 2019, 6:583

[8]. Moradnia F. et al., Materials Research Express, 2019, 6:075057

[9]. Ajayan P.M., Schadler L.S., Braun P.V. Nanocomposite science and technology., 2006: John Wiley & Sons.

[10]. Moussy F. Journal of Biomedical Materials Research Part A., 2010, 94:1001

[11]. Fardood S.T., Ramazani A., Joo S.W. Journal of Applied Chemical Research, 2017, 11:8

[12]. Zhu  J., Wong H.M., Yeung K.W.K., Tjong S.C. Advanced Engineering Materials, 2011, 13:336

[13]. Kosma V., Tsoufis T., Koliou T., Kazantzis A., Beltsios K., De Hosson JTM., Gournis D. Materials Science and Engineering: B, 2013, 178:457

[14]. Kim S., Ku S.H., Lim S.Y., Kim J.H., Park C.B. Advanced Materials, 2011, 23:2009

[15]. Chen F., Zhu Y.J., Wang K.W., Zhao K.L. CrystEngComm, 2011, 13:1858

[16]. Liu Y., Huang J., Li H. Journal of Materials Chemistry B, 2013, 1:1826

[17]. Chandanshive B.B., Rai P., Rossi A.L., Ersen O., Khushalani D. Materials Science and Engineering: C, 2013, 33:2981

[18]. Nathanael  A.J., Mangalaraj D., Hong S.I., Masuda Y. Materials Characterization, 2011, 62:1109

[19]. Baradaran  S., Moghaddam E., Basirun WJ., Mehrali M., Sookhakian M., Hamdi M., Moghaddam M.R., Alias Y. Carbon, 2014, 69:32

[20]. Webster  T.J., Massa-Schlueter E.A., Smith J.L., Slamovich E.B. Biomaterials, 2004, 25:2111

[21]. Zhang Y., Pan C. Diamond and related materials, 2012, 24:1

[22]. Suk  J.W., Piner R.D., An J., Ruoff R.S.ACS nano, 2010, 4:6564

[23]. Zhang L., Zhang F., Yang  X., Long  G., Wu  Y., Zhang  T., Leng  K., Huang  Y., Ma  Y. Scientific Reports, 2013, 3:1408

[24]. Balandin  A.A., Ghosh S., Bao W., Calizo I., Teweldebrhan D., Miao F., Lau CN.Nano l

Letters, 2008, 8:902

[25]. Geim A.K.,  Science, 2009, 324: 1530

[26]. Ferrari A.C., Meyer J.C., Scardaci V., Casiraghi C., Lazzeri M., Mauri F., Piscanec S., Jiang D., Novoselov K.S., Roth S. Physical review letters, 2006, 97:187401

[27]. Dubey  N., Bentini R., Islam I., Cao T., Castro Neto A.H., Rosa V. Stem cells international, 2015, 2015.

[28]. Wang  G., Shen X., Wang B., Yao J., Park J. Carbon, 2009, 47:1359

[29]. Du J., Cheng H.M., Macromolecular Chemistry and Physics, 2012, 213: 1060

[30]. Akhavan O., Ghaderi E., Shahsavar M. Carbon, 2013, 59:200

[31]. Chaudhuri B. Biofabrication, 2015, 7:015009

[32]. Hummers Jr W.S., Offeman R.E. Journal of the American Chemical Society, 1958, 80:1339

[33]. Pakfar A., Irani S., Hanaee-Ahvaz H. Tissue and Cell, 2017, 49:122

[34]. Arvizo R.R., Miranda O.R., Thompson M.A., Pabelick C.M., Bhattacharya R., Robertson J.D., Rotello V.M., Prakash Y.S., Mukherjee P. Nano letters, 2010, 10:2543

[35]. Selvakumar  M., Srivastava P., Pawar HS., Francis N.K., Das B., Sathishkumar G., Subramanian B., Jaganathan S.K., George G., Anandhan S.  ACS Applied Materials & Interfaces, 2016, 8:4086

[36]. Pazarçeviren  A.E., Tahmasebifar A., Tezcaner A., Keskin D., Evis Z. Ceramics International, 2018, 44:3791

[37]. Gu  M., Liu Y., Chen T., Du F., Zhao X., Xiong C., Zhou Y. Tissue Engineering Part B: Reviews, 2014, 20:477