Document Type: Review Article

Authors

1 Department of Materials Engineering, School of Engineering, Yasouj University, Yasouj, Iran

2 Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, Iran

Abstract

Creep behavior of AISI 316 austenitic stainless steel as one of the most fundamental materials utilized in high temperature operating conditions due to their good high-temperature mechanical properties in various industries such as high temperature power generation plants, gas and steam turbines, pipelines, weld joints, pressure vessels, and heat exchangers. This review attempted to cover some identifying factors on the creep behavior of the 316 stainless steel such as addition of alloying elements such as N and Cu into the matrix, presence of residual stress and pre-strain, microstructure and cold work. In addition, the creep-fatigue combination behavior of the 316 austenitic stainless steel was discussed.

Graphical Abstract

Keywords

[1]. Hossain S., Truman C.E., Smith D. J. Fatigue Fract. Eng. Mater. Struct., 2011, 34:654

[2]. Yan X.L., Zhang X.C., Tu S.T., Mannan S.L. Xuan F.Z., Lin Y.C., Int. J. Pres. Ves. Pip., 2015, 126:17

[3]. Coleman M., Miller D., Stevens R., Integrity of High-Temperature Welds, Conference, Nottingham, November, Professional Engineering Publishing Ltd., Bury St Edmunds, IP32 6BW, UK. 1998

[4]. Hormozi R., Biglari F., Nikbin K. Eng. Fract. Mech., 2015, 141:19

[5]. Sasikala G., Mannan, S.L., Mathew M.D., Bhanu Rao K. Metall. Mater. Trans., 2000, 31:1175

[6]. Ghosh A., Gurao N., Mater. Des., 2016, 109:186

[7]. Plaut R.L., Herrera C., Escriba D.M., Rios P.R., Padilha A. F. Mat. Res., 2007, 10:453

[8]. Viswanathan R., Damage mechanisms and life assessment of high temperature components; ASM international: 1989; p 1-440

[9]. Maruyama K., Baba, E., Yokokawa K. Tetsu-to-Hagane, 1994, 80:336

[10]. Spindler M.W., Spindler S.L. Int. J. Pres. Ves. Pip., 2008, 85:89

[11]. Holmström S., Auerkari P. Materials at High Temperatures, 2008, 25:103

[12]. Maruyama K., Armaki H.G., Yoshimi K. Int. J. Pres. Ves. Pip., 2007, 84:171

[13]. Srinivasan V., Valsan M., Bhanu Sankara Rao K., Mannan S.L., Raj B. Int.  J. Fatigue., 2003, 25:1327

[14]. Hormozi R., Biglari F., Nikbin K. Int. J. Fatigue., 2015, 75:153

[15]. Mathew M.D., Laha K., Ganesan. V. Mater. Sci. Eng. A., 2012, 535:76

[16]. Ganesan V., Mathew M.D., Sankara Rao K.B. Mater. Sci. Tech-Lond, 2009, 25:614

[17]. Mathew M.D., Sasikala G., Bhanu Sankara Rao K., Mannan S.L. Mater. Sci. Eng. A., 1991, 148:253

[18]. Stoltz R., Vander Sande J. Metall. Mater. Trans., 1980, 11:1033

[19]. Lee H.J., Lee C.S., Chang Y.W. Metall. Mater. Trans, 2005, 36:967

[20]. Degallaix S., Foct S.J., Hendry A. J. Mater. Sci. Technol, 1986, 2:946

[21]. Müllner P., Solenthaler C., Uggowitzer P., Speidel M.O. Fundamental Aspects of Dislocation Interactions; Institute of Metallurgy, ETH Zürich (Switzerland): 1993; p 164-169

[22]. Mathew M.D., Kumar J.G., Ganesan V., Laha K. Metall. Mater. Trans., 2014, 45:731

[23]. Chi C.Y., Yu H.Y., Dong J.X., Liu W.Q., Cheng S.C., Liu Z.D., Xie Z.S. Pro. Nat. Sci-Mater., 2012, 22:175

[24]. Bai J.W., Liu P.P., Zhu Y.M., Li X.M.,  Chi C.Y., Yu H.Y., Xie X.S., Zhan Q. Mater. Sci. Eng. A, 2013, 584:57

[25]. Zhang Y., Wang. L., Jiang W., Bai G., Chen L. Mater. Trans., 2005, 46:2015

[26]. Sen I., Amankwah. E., Kumar N.S., Fleury, E., Oh-ishy K., Hono K., Ramamurty U.  Mater. Sci. Eng. A, 2011, 528:4491

[27]. He S.M., Van Dijk N.H., Paladugu M., Schut H., Kohlbrecher J., Tichelaar F.D., Van der Zwaag S. Phys. Rev. B, 2010, 82:174111

[28]. Zhang S., Schut H., Bruck E., Van der Zwaag S., Van Dijk N.H. Journal of Physics: Conference Series 443, IOP Publishing, 2013

[29]. Zhang S., Schut H., Kohlbrecger J., Langelaan G., Bruck E., Van der Zwaag S., Van Dijk N.H. Philos. Mag, 2013, 93:4182

[30]. Laha K., Kyono J., Shinya N. Scr. Mater., 2007, 56:915

[31]. Cai B., Kang J.H., Hong C.W., Kim S.J. Mater. Sci. Eng. A, 2016, 662:198

[32]. Turski M., Bouchard P.J., Steuwer A., Withers P.J. Acta Mater, 2008, 56:3598

[33]. Bouchard P.J., Withers P.J., McDonald S.A., Heenan R.K. Acta Mater, 2004, 52:23

[34]. Energy B. Assessment procedure for the high temperature response of structures: British Energy Generation Limited; Document R5, 2003; Paper ID 458.

[35]. Holt P., Spindler M.W. A practical application of continuum damage mechanics to plant integrity assessment, Proceedings of the Symposium on Elasticity and Damage in Solids Subject to Microstructural Change, Newfoundland. 1996

[36]. Bradford R.A.W. Finite Element Modelling of Reheat Cracking Initiation in Austenitic Weldments, Institute of Mechanical Engineers ConferenceTransactions, International Conference on "Assuring It's Safe", 18-19 May1998, Heriot-Watt University, Edinburgh, UK, paper C535/023/98, pp 287-295

[37]. Spindler M. Fatigue Fract. Eng. Mater. Struct., 2004, 27:273

[38]. Hales R. Fatigue & Fracture of Engineering Materials & Structures, 1983, 6:121

[39]. Turski M., Sherry A.H., Bouchard P.J., Withers P.J. J. Neutron Res., 2004, 12:45

[40]. Hossain S. Residual stresses under conditions of high triaxiality, University of Bristol.

[41]. Skelton R.P., Goodall I.W., Webster G.A., Spindler M.W. Int. J. Pres. Ves. Pip., 2003, 80:441

[42]. Hossain S., Truman C.E, Smith D.J., Daymond M.R. Int. J. Mech. Sci., 2006, 48:235

[43]. Hossain S., Truman C.E, Smith D.J., Peng R.L, Stuhr U. Int. J. Solids Struct., 2007, 44:3004

[44]. Li K.S., Peng J., Key Engineering Materials, 2019, 795:152

[45]. Emerson R.W., Jackson R.W., Dauber C.A. Welding. J., 1962, 41:385

[46]. Curran R.M., Rankin A.W., Weld. J., 1955, 34:205

[47]. Arioka K., Yamada T., Terachi T., Chiba G. Corrosion, 2007, 63:1114

[48]. Kim Y.K., Youn S.J., Kim S.W., Hong J., Lee K.A. Mater. Sci. Eng. C., 2019, 763:138138