Document Type : Original Article

Authors

1 Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 College of Medicine, National Taiwan University, 10048, Taipei, Taiwan

3 Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran

4 Stem Cell Technology Research Center, Tehran, Iran

Abstract

Graphene based nanocomposites have been used to improve the osteogenic differentiation of stem cells. In this research study, the reduced graphene oxide (rGO) sheets were used as the base material while decorated with strontium doped hydroxyapatite (rGO/HAP/Sr). X-ray differentiation (XRD) analysis and transmission electron microscopy (TEM) were employed to evaluate the size and morphology of the HAP/Sr decorated rGO. Fourier transform infrared (FT-IR) was used to analyze the nanocomposites’functional groups.Raman spectroscopy was used to investigate the possible disorders in rGO/HAP/Sr structure and the number of layers. Ion-coupled plasma optical emission spectroscopy (ICP-OES) was used for evaluating the atomic concentrations of the elements (Ca and Sr) in nanocomposites. Likewise, zeta potential of thenanocomposite was determined to be -18.9 mV. To evaluate the cytotoxicity of the nanocomposites, MTT assay was performed. The osteo-inductive potential of the synthesized rGO/HAP/Sr nanocomposites was investigated using the adipose-derived mesenchymal stem cells (ADCs). Osteogenic differentiation was confirmed by measuring the calcium content. The results revealed that the nanocomposites concentrations induce calcium deposition by cells, indicating that the bone differentiation was done successfully. Lastly, it can be concluded that, this nanocomposite, alone, can be used for bone differentiation induction without using any chemical inducers.

Graphical Abstract

Strontium doped nanohydroxy apatite/reduced graphene oxide nanohybrid is speed up osteogenic differentiation of human mesenchymal stem cells

Keywords

Main Subjects

[1]. Valenti M., Dalle Carbonare L., Mottes M. International Journal of Molecular Sciences, 2016, 18:41

[2]. Vieira S., Vial S., Reis R.L., Oliveira J.M. Biotechnology Progress, 2017, 33:590

[3]. Roohani-Esfahani S.I., Nouri-Khorasani S., Lu Z.F., Appleyard R.C., Zreiqat H. Acta Biomaterialia, 2011, 7:1307

[4]. Gaharwar A.K., Dammu S.A., Canter A.M., Wu C.J., Schmidt G. Biomacromolecules, 2011, 12:1641

[5]. Boanini E., Gazzano M., Bigi A., Acta Biomaterialia, 2010, 6:1882

[6]. Cox S.C., Jamshidi P., Grover L.M., Mallick K.K. Materials Science and Engineering: C, 2014, 35:106

[7]. Shin S.R., Li Y.C., Jang H.L., Khoshakhlagh P., Akbari M., Nasajpour A., Shrike Zhang Y., Tamayol A., Khademhosseini A. Advanced Drug Delivery Reviews, 2016, 105:255

[8]. Landi E., Celotti G., Logroscino G., Tampieria A. Journal of the European Ceramic Society, 2003, 23:2931

[9]. Devi Ravi N., Balu R., Sampath Kumar T.S. Journal of the American Ceramic Society, 2012, 95:2700

[10]. Huang X., Zeng Z., Fan Z., Liu J., Zhang H. Advanced Materials, 2012, 24:5979

[11]. Peón Avés E., Fuentes G. Delgado J., Morejon Alonso L., Almirall A., Carrodeguas R. Latin American Applied Research, 2004, 34:225

[12]. Kim H.W., Koh Y.H., M., Kong Y.M., Kim H.E. Journal of Materials Science: Materials in Medicine, 2004, 15:1129

[13]. Sopyan L., Mardziah C.M., Toibah A.R., Singh R. Advanced Materials Research, 2008, 47-50:928

[14]. Tredwin C.J., Young A.M., Abou Neel E.A., Georgiou G., Knowles J.C. Journal of Materials Science: Materials in Medicine, 2013, 25:47

[15]. Özbek Y.Y., Baştan F.E., Üstel F. Journal of Thermal Analysis and Calorimetry, 2016, 125:745

[16]. Tredwin C.J., Young A.M., Abou Neel E.A., Georgiou G., Knowles J.C. Biomaterials, 2005, 26:4073

[17]. Capuccini C., Torricelli P., Boanini E., Gazzano M., Giardino R., Bigi A. Journal of Biomedical Materials Research Part A, 2009, 89A:594

[18]. Reginster J.Y., Seeman E., De Vernejoul M.C., Adami S., Compston J., Phenekos C., Devogelaer J.P., Diaz Curiel M., Sawicki A., Goemaere S., Sorensen O.H., Felsenberg D., Meunier P.J. The Journal of Clinical Endocrinology & Metabolism, 2005, 90:2816

[19]. Holt B.D., Wright Z.M., Arnold A.M., Sydlik S.A. Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9:e1437

[20]. Lee J.H., Shin Y.C., Jin O.S., Kang S.H., Hwang Y.S., Park J.C., Hong S.W., Han D.W. Nanoscale, 2015, 7:11642

[21]. Li J.L., Tang B., Yuan B., Sun L., Wang X.G. A Biomaterials, 2013, 34:9519

[22]. Pakfar A., Irani S., Hanaee-Ahvaz H. Tissue and Cell, 2017, 49:122

[23]. Xu C., Wang X., Zhu J., Yang X., Lu L. Journal of Materials Chemistry, 2008, 18:5625

[24]. Kumar S., Chatterjee K., Nanoscale, 2015, 7:2023

[25]. Ning Z., Chang Z., Li W., Sun C., Zhang J., Liu Y. Chinese Journal of Chemical Engineering, 2012, 20:89

[26]. Suganthi R.V., Elayaraja K., Joshy M.I.A., Chandra V.S., Girija E.K., Kalkura S.N. Materials Science and Engineering: C, 2011, 31:593

[27]. Prekajski M., Mirković M., Todorović B., Matković A., Marinović-Cincović M., Luković J., Matović B. Journal of the European Ceramic Society, 2016, 36:1293

[28]. Dresselhaus M.S., Jorio A., Hofmann M., Dresselhaus G., Saito R. Nano Letters, 2010, 10:751

[29]. Tuinstra F., Koenig J.L. The Journal of Chemical Physics, 1970, 53:1126

[30]. Cancedda R., Dozin B., Giannoni P., Quarto R. Matrix Biology, 2003, 22:81

[31]. Kashef-Saberi M.S., Hayati Roodbari N., Parivar K., Vakilian S., Hanaee-Ahvaz H. ASAIO Journal, 2018, 64:e115

[32]. Kazem-Arki M., Kabiri M., Rad I., Roodbari N.H., Hosseinpoor H., Mirzaei S., Parivar K., Hanaee-Ahvaz H. Cytotechnology, 2018.

[33]. Tautzenberger, A., Kovtun, and Ignatius, Nanoparticles and their potential for application in bone. International Journal of Nanomedicine, 2012: p. 4545.

[34]. Liu L., Zhang J., Zhao J., Liu F. Nanoscale, 2012, 4:5910

[35]. Weaver C.L., Cui X.T. Advanced Healthcare Materials, 2015, 4:1408

[36]. Liu Z., Liu B., Ding J., Liu J. Analytical and Bioanalytical Chemistry, 2014, 406:6885

[37]. Akhavan O., Ghaderi E., Akhavan A., Biomaterials, 2012, 33:8017

[38]. Chang Y., Yang S.T., Liu J.H., Dong E., Wang Y., Cao A., Liu Y., Wang H. Toxicology Letters, 2011, 200:201

[39]. Egles C., Ehret C., Aid-Launais R., Sagardoy T., Siadous R., Bareille R., Rey S., Pechev S., Etienne L., Kalisky J., de Mones E., Letourneur D., Amedee Vilamitjana J. Plos One, 2017, 12:e0184663

[40]. Frasnelli M., Cristofaro F., Sglavo V.M., Dirè S., Callone E., Ceccato R., Bruni G., Cornaglia A.I., Visai L. Materials Science and Engineering: C, 2017, 71:653

[41]. Chattopadhyay N., Quinn S.J., Kifor O., Ye C., Brown E.M. Biochemical Pharmacology, 2007, 74:438

[42]. Xue W., Moore J.L., Hosick H.L., Bose S., Bandyopadhyay A., Lu W.W., Cheung K.M.C., Luk K.D.K. Journal of Biomedical Materials Research Part A, 2006, 79A:804

[43]. Sharma L., Kapoor D., Issa S. Current Opinion in Rheumatology, 2006, 18:147

[44]. Qiu K., Zhao X.J., Wan C.X., Zhao C.S., Chen Y.W. Biomaterials, 2006, 27:1277

[45]. Edwin N., Saranya S., Wilson P. Ceramics International, 2019, 45:5475