Document Type : Original Article

Authors

1 Nano Research Laboratory, University of Nigeria, Department of Physics and Astronomy, Nsukka, Enugu State, Nigeria

2 Department of Physics and Astronomy, Faculty of Physical Sciences, University of Nigeria, Nsukka, Enugu State

3 Department of Physics and Industrial Physics, Faculty of Physical Sciences, Nnamdi Azikiwe University, Awka, Anambra State

Abstract

In this research study, the growth of SnZnSe thin film materials was carried out using the cationic precursor, which was an aqueous solution of 0.035 mol solution of ZnSO4.7H2O while the anionic precursor was 0.1 mol solution of selenium metal powder was prepared by dissolving with 4 mL of hydrogen chloride (HCl). The XRD of the films deposited on FTO substrates at different dopant concentration 1%, 2%, 3% and 4% showed the reflection peaks at (220), (221), (300), (310), (311), (222) and (320) with the lattice constant of a=7.189 Ǻ.  The SEM results revealed the random distribution of tiny nano-grains on the substrate, the nano-grains were observed to agglomerate due to the presence of large free energy characteristics of small particles. The optical bandgap of the deposited material enhanced from 2.0-2.3 eV as the dopant concentration increased.

Graphical Abstract

Electrochemical deposition of tin doped zinc selenide (SnZnSe) thin film material

Keywords

Main Subjects

[1]. Young H.D., Freedman R.A. Addison Wesley., 2008, I:232
[2]. Wei A., Zhao X., Liu J., Zhao Y. Physica B., 2013, 410:120
[3]. Venkatachalam S., Jeyachandran Y.L., Sureshkumar P., Dhayalraj A., Mangalaraj D., Narayandass Sa.K., Velumani S. Materials Characterization, 2007, 58:794
[4]. Xu J., Wang W., Zhang X., Chang X., Shi Z., Haarberg G.M. J. Alloys Compd., 2015, 632:778
[5]. Agawane G.L., Seung W.S., Suryawanshia M.P., Gurav K.V., Moholkara A.V., Leeb J.Y., Patil P.S., Jae H.Y., Jin H.K. Ceramics International, 2013, 06:011
[6]. Bakiyaraj G., Dhanasekaran R. Appl. Nanosci., 2013, 3:125
[7]. Deshmukh L.P., Pingale P.C., Kamble S.S., Mane S.T., Pirgonde B.R., Sharonb M., Sharon M. Mater. Lett., 2013, 92:308
[8]. Chandramohan R., Mahalingam T., Chu J.P., Sebastian P.J. Journal of New Material for Electrochemical Systems, 2005, 8:143
[9]. Akhtar M.S., Malik M.A., Riaz S., Naseem S., O'Brien P. Mater. Sci. Semicond. Process., 2015, 30:292
[10]. Dhanasekaran V., Mahalingam T., Rhee J., Chu J.P. Optik, 124:255
[11]. Lohar G.M., Shinde S.K., Rath M.C., Fulari V. J. Mater. Sci. Semicond. Process., 2014, 26:548
[12]. Mehta C., Saini G.S.S., Abbas J.M., Tripathi S. K. Appl. Surf. Sci., 2009, 256:608–614
[13]. Mahalingam T., Kathalingam A., Lee S., Moon S., Kim D.Y. Journal of New Material for Electrochemical Systems, 2007, 10:15-19
[14]. Pardo A.P., Gonzalez H.G., Castro-Lora López-Carreño L.D., Martínez H.M., Salcedo N.J. T. J. Phys. Chem. Solid., 2014, 75:713
[15]. Mahalingam T., Kathalingam A., Lee S., Moon S., Kim Y.D. J. New Mater. Electrochemi. Sys., 2007, 10:15
[16]. Imran M., Abida S., Nawazish A.K., A.A. Khurram, Nasir M. Thin Solid Film., 2018, 11:1
[17]. Pentia E., Draghici V., Sarua G., Mereu B., Pintilie L., Sava F., Popescu M. J. Electrochem. Soc., 2004, 151:729
[18]. Rajesh Kumar T., Prabukanthan, Harichandran G., Theerthagiri J., Chandrasekaran S, Madhava J. Ionics, 2017, 23:2497
[19]. Rajesh T.K., Prabukanthan P., Harichandran G., Theerthagiri J., Tetiana T., Gilberto M., Bououdina M. Journal of Solid State Electrochemistry, 2017, 27:254
[20]. Sadekar H.K., Ghule A.V., Sharma R. Composite Part B., 2013, 44:553
[21]. Samantilleke A.P., Boyle M.H., Young J., Dharmadas I.M., Journal of Materials Science: Materials in Electronics, 1998, 9:231
[22]. Ahna K., Jeon J.H., Jeong S.Y., Kim J.M., Ahn H.S., Kim J.P., Jeong E.D., Cho C.R. Current Applied Physics., 2012, 12:1465
[23]. Hwang D.H., Ahn J.H., Hui K.N., Hui K.S., Son Y.G. Nanoscale Research Letters, 2012, 7:1
[24]. Bosco J.P., Demers S.B., Kimball G.M., Lewis N.S., Atwater H.A. Journal of Applied Physics., 2012, 112:093703
[25]. Yano S., Schroeder R., Sakai H., Ullrich B. Applied Physics Letters., 2003, 82:2026
[26]. Huang M.W., Cheng Y.W., Pan K.Y., Chang C.C., Shieu F.S., Shih H.C. Applied Surface Science., 2012, 261:665
[27]. Xu G., Ji S., Miao C., Liu G., Ye C. Journal of Materials Chemistry, 2012, 22:4890
[28]. Nagamani K., Revathi N., Prathap P., Lingappa Y., Reddy K.T.R. Current Applied Physics., 2012, 12:380
[29]. Agawane G.L., Wook Shin S., Sung Kim M., Suryawanshi M.P., Gurav K.V., Moholkar A.V., Yong Lee J., Yun J.H., Patil P.S., Hyeok Kim J. Current Applied Physics., 2013, 13:850
[30]. Ikhioya I.L., Ekpunobi A.J. Journal of Nigeria Association of Mathematical Physics, 2014, 28:281
[31]. Ikhioya I.L., Ekpunobi A.J. Journal of Nigeria Association of Mathematical Physics., 2015, 29:325
[33]. Ikhioya I.L., Okoli D.N., Ekpunobi A.J. SSRG International Journal of Applied Physics, 2019, 6:55
[34]. Ikhioya I.L., Okoli D.N., Ekpunobi A.J. International Journal of ChemTech Research, 2019, 12:200
[35]. Sajjadnejad M., Karimi Abadehb H. Section A: Theoretical, Engineering and Applied Chemistry, 2020, 4:422
[36]. Miranzadeh M., Afshari F., Khataei B., Kassaee M. Advanced Journal of Chemistry, Section A: Theoretical, Engineering and Applied Chemistry, 2020, 4:In press
[37]. Magu T., Agobi A., Hitler L., Dass P. Journal of Chemical Reviews, 2019, 1:19
[38]. Ikhioya I.L., Okoli D.N., Ekpunobi A.J. International Journal of ChemTech Research, 2019, 12:200
[39]. Ikhioya I.L., Okoli D.N, Ekpunobi A.J. International Journal of Applied Physics, 2019, 6:55